2018-10-18 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 03 , Vol. 16 , 2018    10.3788/COL201816.030602


Thermal expanded core technique applied to high power fiber mode field adapter
Fanlong Dong1, Xinhai Zhang1, and Feng Song2
1 Department of Electronics and Electrical Engineering, [Southern University of Science and Technology], Shenzhen 51 8055, China
2 Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, [Nankai University], Tianjin 300457, China

Chin. Opt. Lett., 2018, 16(03): pp.030602

DOI:10.3788/COL201816.030602
Topic:Fiber optics and optical communication
Keywords(OCIS Code): 060.2340  060.2310  140.3510  230.2285  

Abstract
A mode field adapter (MFA) fabricated by the thermal expanded core (TEC) technique is investigated. Firstly, the mode field characteristics of the TEC large mode area fiber (LMAF) are analyzed. Compared with the single-mode fiber (SMF), the mode field diameter of the LMAF enlarged slower than that of the SMF. Secondly, the mode field characteristics of the different fibers with TEC treatment are discussed. Thirdly, the transmission efficiency of the MFA fabricated by the SMF and LMAF is also investigated. Finally, we used the 6/125 μm SMF and 15/130 μm LMAF to fabricate an MFA with transmission efficiency of 92% and the handling power as high as 100 W.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (675 KB)

Share:


Received:2017/10/12
Accepted:2018/1/12
Posted online:2018/3/7

Get Citation: Fanlong Dong, Xinhai Zhang, and Feng Song, "Thermal expanded core technique applied to high power fiber mode field adapter," Chin. Opt. Lett. 16(03), 030602(2018)

Note: This work was supported by the Shenzhen Peacock Plan (No. KQCX2015033110182368) and the project of Shenzhen Science and Technology Innovation Committee (No. JCYJ20160301114759922).



References

1. Y. W. Zhou, and Z. Z. Luo, Acta Photon. Sin. 42, 12 (2013).

2. T. Oda, K. Hirakawa, K. Ichii, S. Yamamoto, and K. Aikawa, in Optical Fiber Communications Conference and Exhibition , IEEE (2017).

3. A. Sun, and Z. Wu, Opt. Commun. 348, 50 (2015).

4. L. T. Li, D. S. Zhang, X. Y. Wen, and S. Peng, Chin. Opt. Lett. 13, 100601 (2015).

5. M. N. Mclandrich, Electron. Lett. 24, 8 (1988).

6. Y. Ohtera, O. Hanaizumi, and S. Kawakami, J. Lightwave Technol. 17, 2675 (1999).

7. M. Kihara, S. Tomita, and M. Matsumoto, IEEE Photon. Technol. Lett. 4, 12 (2002).

8. G. S. Kliros, and N. Tsironikos, Optik Int. J. Light Electron Opt. 116, 365 (2005).

9. M. C. Oh, S. H. Cho, and H. J. Lee, Opt. Commun. 246, 337 (2005).

10. K. T. Kim, K. H. Lee, E. S. Shin, H. S. Song, K. B. Hong, S. Hwangbo, and K. R. Sohn, Opt. Commun. 261, 1 (2006).

11. X. Yan, H. W. Fu, H. D. Li, and X. Qiao, Chin. Opt. Lett. 14, 030603 (2016).

12. Z. Zheng, D. Ouyang, J. Zhao, M. Liu, S. Ruan, P. Yan, and J. Wang, Photon. Res. 4, 135 (2016).

13. F. Wang, Acta Opt. Sin. 12, 116 (2005).

14. X. Zhou, Z. Chen, H. Chen, J. Li, and J. Hou, Opt. Laser Technol. 47, 72 (2013).

15. K. Li, J. Xue, B. Su, M. Dong, W. Zhang, and H. Lv, Opt. Tech. 42, 5 (2016).

16. D. Neugroschl, J. Park, M. Wlodawski, J. Singer, and V. I. Kopp, Proc. SPIE 8601, 860139 (2013).

17. K. Zhao, Z. Chen, X. Zhou, Z. Wang, and H. Jiang, in Pacific Rim Laser Damage International Society for Optics and Photonics (2015).

18. M. D. Feit, and J. A. Fleck, Appl. Opt. 17, 3990 (1978).

19. N. Amitay, H. M. Presby, F. V. Dimarcello, and K. Nelson, J. Lightwave Technol. 5, 70 (1987).


Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备05015387