2018-04-24 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 03 , Vol. 16 , 2018    10.3788/COL201816.030601

Wideband signal detection based on high-speed photonic analog-to-digital converter
Guang Yang, Weiwen Zou, Ye Yuan, and Jianping Chen
State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, [Shanghai Jiao Tong University], Shanghai 200240, China

Chin. Opt. Lett., 2018, 16(03): pp.030601

Topic:Fiber optics and optical communication
Keywords(OCIS Code): 060.5625  230.0250  250.4745  000.4430  

This Letter demonstrates the effectiveness of a high-speed high-resolution photonic analog-to-digital converter (PADC) for wideband signal detection. The PADC system is seeded by a high-speed actively mode locked laser, and the sampling rate is multiplied via a time-wavelength interleaving scheme. According to the laboratory test, an X-band linear frequency modulation signal is detected and digitized by the PADC system. The channel mismatch effect in wideband signal detection is compensated via an algorithm based on a short-time Fourier transform. Consequently, the signal-to-distortion ratio (SDR) of the wideband signal detection is enhanced to the comparable SDR of the single-tone signal detection.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (0 KB)


Posted online:2018/3/6

Get Citation: Guang Yang, Weiwen Zou, Ye Yuan, and Jianping Chen, "Wideband signal detection based on high-speed photonic analog-to-digital converter," Chin. Opt. Lett. 16(03), 030601(2018)

Note: This work was partially supported by the National Natural Science Foundation of China (Nos. 61571292 and 61535006).


1. J. A. Wepman, IEEE Commun. Mag. 33, 39 (1995).

2. R. H. Walden, “Analog-to-digital conversion in the early 21st century,” in Wiley Encyclopedia of Computer Science and Engineering (Wiley, 2007), p.?1.

3. B. Murmann, “ADC performance survey 1997–2017,” http://web.stanford.edu/~murmann/adcsurvey.html (2017).

4. G. C. Valley, Opt. Express 15, 1955 (2007).

5. A. Khilo, S. J. Spector, M. E. Grein, A. H. Nejadmalayeri, C. W. Holzwarth, M. Y. Sander, M. S. Dahlem, M. Y. Peng, M. W. Geis, N. A. DiLello, J. U. Yoon, A. Motamedi, J. S. Orcutt, J. P. Wang, C. M. Sorace-Agaskar, M.A. Popovi?, J. Sun, G. R. Zhou, H. Byun, J. Chen, J. L. Hoyt, H. I. Smith, R. J. Ram, M. Perrott, T. M. Lyszczarz, E. P. Ippen, and F. X. K?rtner, Opt. Express 20, 4454 (2012).

6. J. Kim, M. J. Park, M. H. Perrott, and F. X. K?rtner, Opt. Express 16, 16509 (2008).

7. P. W. Juodawlkis, J. J. Hargreaves, R. D. Younger, G. W. Titi, and J. C. Twichell, J. Lightwave Technol. 21, 3116 (2003).

8. P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, and A. Bogoni, Nature 507, 341 (2014).

9. K. Goda, and B. Jalali, Nat. Photon. 7, 102 (2013).

10. C. Wang, and J. Yao, IEEE Trans. Microwave Theory Tech. 61, 4275 (2013).

11. W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, Sci. Rep. 6, 19786 (2016).

12. Q. Guo, M. Chen, Y. Liang, H. Chen, S. Yang, and S. Xie, Chin. Opt. Lett. 15, 010012 (2017).

13. F. Zhang, Q. Guo, Y. Zhang, Y. Yao, P. Zhou, D. Zhu, and S. Pan, Chin. Opt. Lett. 15, 112801 (2017).

14. G. Yang, W. Zou, X. Li, and J. Chen, Opt. Express, 23, 2174 (2015).

15. G. Yang, W. Zou, L. Yu, K. Wu, and J. Chen, Opt. Express, 24, 24061 (2016).

16. H. Zhang, W. Zou, G. Yang, and J. Chen, Chin. Opt. Lett. 14, 030602 (2016).

17. I. W. Selesnick, Signal 10, 1 (2009).

Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387