2018-04-24 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 03 , Vol. 16 , 2018    10.3788/COL201816.030501

High-harmonic-generation-inspired preparation of optical vortex arrays with arbitrary-order topological charges
Wuhong Zhang, Lixiang Chen
Department of Physics, College of Physics Science and Technology, [Xiamen University], Xiamen 361005, China

Chin. Opt. Lett., 2018, 16(03): pp.030501

Topic:Diffraction and gratings
Keywords(OCIS Code): 050.4865  070.6120  140.3300  090.1995  

In the process of high-harmonic generation with a Laguerre-Gaussian (LG) mode, it was well established that the topological charge could be of an N-fold increase due to angular momentum conservation. Here, by mimicking the effect of high-harmonic generation, we devise a simple algorithm to generate optical vortex arrays carrying arbitrary topological charges with a single phase-only spatial light modulator. By initially preparing a coaxial superposition of suitable low-order LG modes, we demonstrate experimentally that the topological charges of the embedded vortices can be multiplied and transformed into arbitrarily high orders on demand, while the array structure remains unchanged. Our algorithm offers a concise way to efficiently manipulate the structured light beams and holds promise in optical micromanipulation and remote sensing.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (708 KB)


Posted online:2018/3/6

Get Citation: Wuhong Zhang, Lixiang Chen, "High-harmonic-generation-inspired preparation of optical vortex arrays with arbitrary-order topological charges," Chin. Opt. Lett. 16(03), 030501(2018)

Note: We are grateful to the Optics group led by Professor Miles Padgett at University of Glasgow for kind support in LabVIEW codes. This work was supported by the National Natural Science Foundation of China (NSFC) (Nos. 11104233 and 11474238), the Fundamental Research Funds for the Central Universities (No. 20720160040), the Natural Science Foundation of Fujian Province (No. 2015J06002), and the Program for New Century Excellent Talents in University (NCET) (NCET-13-0495).


1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).

2. J. F. Nye, and M. V. Berry, Proc. R. Soc. Lond. A 336, 165 (1974).

3. M. Padgett, and R. Bowman, Nat. Photon. 5, 343 (2011).

4. J. Wang, Photon. Res. 4, B14 (2016).

5. G. Milione, T. Wang, J. Han, and L. Bai, Chin. Opt. Lett. 15, 030012 (2017).

6. W. Wang, T. Yokozeki, R. Ishijima, M. Takeda, and S. G. Hanson, Opt. Express 14, 10195 (2006).

7. X. L. Wang, X. D. Cai, Z. E. Su, M. C. Chen, D. Wu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, Nature 518, 516 (2015).

8. J. Courtial, R. Zambrini, M. R. Dennis, and M. Vasnetsov, Opt. Express 14, 938 (2006).

9. G. H. Kim, J. H. Jeon, Y. C. Noh, K. H. Ko, H. J. Moon, J. H. Lee, and J. S. Chang, Opt. Commun. 147, 131 (1998).

10. K. Ladavac, and D. Grier, Opt. Express 12, 1144 (2004).

11. W. Zhang, J. Wang, F. Li, L. Chen, and E. Karimi, Laser Photon. Rev. 11, 1600163 (2017).

12. J. E. Curtis, B. A. Koss, and D. G. Grier, Opt. Commun. 207, 169 (2002).

13. G. X. Wei, L. L. Lu, and C. S. Guo, Opt. Commun. 282, 2665 (2009).

14. S. J. Huang, J. Zhang, W. Shao, F. Q. Zhu, and T. Y. Wang, Acta Photon. Sin. 46, 826002 (2017).

15. K. Otsuka, and S. C. Chu, Opt. Lett. 34, 10 (2009).

16. Y. C. Lin, T. H. Lu, K. F. Huang, and Y. F. Chen, Opt. Express 19, 10293 (2011).

17. X. Zhang, R. Chen, Y. Zhou, H. Ming, and A. T. Wang, Chin. Opt. Lett. 15, 030008 (2017).

18. E. Brasselet, Phys. Rev. Lett. 108, 087801 (2012).

19. J. Masajada, and B. Dubik, Opt. Commun. 198, 21 (2001).

20. S. Vyas, and P. Senthilkumaran, Appl. Opt. 46, 2893 (2007).

21. S. Vyas, and P. Senthilkumaran, Appl. Opt. 46, 7862 (2007).

22. T. Ando, N. Matsumoto, Y. Ohtake, Y. Takiguchi, and T. Inoue, J. Opt. Soc. Am. A 27, 2602 (2010).

23. W. Zhang, Z. Wu, J. Wang, and L. Chen, Chin. Opt. Lett. 14, 110501 (2016).

24. R. W. Boyd, Nonlinear Optics , 3rd ed. (Academic, 2008).

25. J. Courtial, K. Dholakia, L. Allen, and M. J. Padgett, Phys. Rev. A 56, 4193 (1997).

26. K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, Phys. Rev. A 54, R3742 (1996).

27. Y. C. Lin, K. F. Huang, and Y. F. Chen, Laser Phys. 23, 115405 (2013).

28. Z. Y. Zhou, D. S. Ding, Y. K. Jiang, Y. Li, S. Shi, X. S. Wang, and B. S. Shi, Opt. Express 22, 20298 (2014).

29. L. Chen, W. Zhang, Q. Lu, and X. Lin, Phys. Rev. A 88, 053831 (2013).

30. Y. Senatsky, J. F. Bisson, J. Li, A. Shirakawa, M. Thirugnanasambandam, and K. I. Ueda, Opt. Rev. 19, 201 (2012).

31. Y. F. Chen, C. C. Chang, C. Y. Lee, C. L. Sung, J. C. Tung, K. W. Su, H. C. Liang, W. D. Chen, and G. Zhang, Photon. Res. 5, 561 (2017).

32. W. Zhang, Q. Qi, J. Zhou, and L. Chen, Phys. Rev. Lett. 112, 153601 (2014).

33. G. Z. Li, Y. P. Chen, H. W. Jiang, and X. F. Chen, Photon. Res. 3, 168 (2015).

34. R. Dasgupta, S. Ahlawat, R. S. Verma, and P. K. Gupta, Opt. Express 19, 7680 (2011).

Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387