2019-03-26 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 02 , Vol. 16 , 2018    10.3788/COL201816.020010

High-power all-fiber 1.0/1.5 μm dual-band pulsed MOPA source
Xiaogang Ge1, Jun Yu1, Weiqi Liu1, Shuangchen Ruan1, Chunyu Guo1, Yewang Chen1, Peiguang Yan1, and Ping Hua1;2
1 Shenzhen Key Laboratory of Laser Engineering, Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institutes, College of Optoelectronic Engineering, [Shenzhen University], Shenzhen 51 8060, China
2 Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK

Chin. Opt. Lett., 2018, 16(02): pp.020010

Topic:Special issue on photonics based on 2d noncarbon materials
Keywords(OCIS Code): 140.3510  140.3280  140.3538  

The simultaneous dual-band pulsed amplification is demonstrated from an Er/Yb co-doped fiber (EYDF), and consequently a high-power all-fiber single-mode 1.0/1.5 μm dual-band pulsed master oscillator power amplifier (MOPA) laser source is realized for the first time, to the best of our knowledge, based on one singlegain fiber. The simultaneous outputs at 1061 and 1548 nm of the laser source have the maximum powers of 10.7 and 25.8 W with the pulse widths of 9.5 ps and 2 ns and the pulse repetition rates of 178 and 25 MHz, respectively. This EYDF MOPA laser source is seeded by two separate preamplifier chains operating at 1.0 and 1.5 μm wavebands. The dependence of the laser output powers on the length of the large-mode area EYDF, the ratio of the powers of the two signals launched into the booster amplifier, and the wavelength of the 1 μm seed signal are also investigated experimentally.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (679 KB)


Posted online:2017/12/26

Get Citation: Xiaogang Ge, Jun Yu, Weiqi Liu, Shuangchen Ruan, Chunyu Guo, Yewang Chen, Peiguang Yan, and Ping Hua, "High-power all-fiber 1.0/1.5 μm dual-band pulsed MOPA source," Chin. Opt. Lett. 16(02), 020010(2018)

Note: This work was supported by the National Natural Science Foundation of China (NSFC) (No. 61308049), the National High-tech R&D Program of China (863 Program) (No. 2015AA021102), the Outstanding Young Teacher Cultivation Projects in Guangdong Province (No. YQ2015142), the Shenzhen Science and Technology Project (Nos. JCYJ20160520161351540 and JCYJ20160427105041864).


1. J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, IEEE J. Sel. Top. Quantum Electron. 12, 233 (2006).

2. D. Richardson, J. Nilsson, and W. Clarkson, J. Opt. Soc. Am. B 27, B63 (2010).

3. S. P. Chen, H. W. Chen, J. Hou, and Z. J. Liu, Opt. Express 17, 24008 (2009).

4. H. W. Chen, Y. Lei, S. P. Chen, J. Hou, and Q. S. Lu, Appl. Phys. B109, 233 (2012).

5. R. Song, J. Hou, S. Chen, W. Yang, and Q. Lu, Appl. Opt. 51, 2497 (2012).

6. C. Yang, S. Xu, S. Mo, C. Li, Z. Feng, D. Chen, Z. Yang, and Z. Jiang, Opt. Express 21, 12546 (2013).

7. I. Pavlov, E. Dulgergil, E. Ilbey, and F. O. Ilday, Opt. Lett. 39, 2695 (2014).

8. K. Guo, X. Wang, P. Zhou, and B. Shu, Appl. Opt. 54, 504 (2015).

9. Y. Tang, X. Li, Z. Yan, X. Yu, Y. Zhang, and Q. J. Wang, IEEE J. Sel. Top. Quantum Electron. 20, 537 (2014).

10. D. Ouyang, J. Zhao, Z. Zheng, S. Ruan, C. Guo, P. Yan, and W. Xie, IEEE Photon. J. 7, 1 (2015).

11. D. G. Lancaster, D. Richter, R. F. Curl, F. K. Tittel, L. Goldberg, and J. Koplow, Opt. Lett. 24, 1744 (1999).

12. C. Erny, K. Moutzouris, J. Biegert, D. Kühlke, F. Adler, A. Leitenstorfer, and U. Keller, Opt. Lett. 32, 1138 (2007).

13. M. Rusu, R. Herda, and O. G. Okhotnikov, Opt. Lett. 29, 2246 (2004).

14. Y. Kimura, and M. Nakazawa, Appl. Phys. Lett. 53, 1251 (1988).

15. J. M. Battiato, T. Morse, and R. K. Kostuk, IEEE Photon. Technol. Lett. 9, 913 (1997).

16. J. K. Sahu, Y. Jeong, D. J. Richardson, and J. Nilsson, Opt. Commun. 227, 159 (2003).

17. J. Yoonchan, Y. Seongwoo, C. A. Coderaard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, IEEE J. Sel. Top. Quantum Electron. 13, 573 (2007).

18. Q. Han, Y. Yao, Y. Chen, F. Liu, T. Liu, and H. Xiao, Opt. Lett. 40, 2634 (2015).

19. G. Sobon, P. Kaczmarek, A. Antonczak, J. Sotor, and K. M. Abramski, Opt. Express 19, 19104 (2011).

20. V. Kuhn, P. We?els, J. Neumann, and D. Kracht, Opt. Express 17, 18304 (2003).

21. Q. Han, Y. He, Z. Sheng, W. Zhang, J. Ning, and H. Xiao, Opt. Lett. 36, 1599 (2011).

22. J. Boullet, L. Lavoute, B. A. Desfarges, V. Kermène, and P. Roy, Opt. Express 14, 3936 (2006).

23. K. Krzempek, G. Sobon, and K. M. Abramski, Opt. Express 21, 20023 (2013).

24. A. R. El-Damak, J. Chang, J. Sun, C. Xu, and X. Gu, IEEE Photon. J. 5, 1501406 (2013).

25. W. Yang, K. Yin, B. Zhang, G. Xue, and J. Hou, Appl. Phys. B116, 169 (2014).

26. L. Huaiqin, G. Chunyu, R. Shuangchen, W. Ruhua, Y. Jun, and L. Weiqi, IEEE Photon. J. 6, 1 (2014).

27. Q. Han, J. Ning, and Z. Sheng, IEEE J. Quantum Electron. 46, 1535 (2010).

28. Y. Cui, and X. Liu, Opt. Express 21, 18969 (2013).

29. C. Guo, W. Liu, S. Ruan, J. Yu, Y. Chen, P. Yan, J. Wang, S. Jain, and P. Hua, IEEE Photon. J. 9, 1 (2017).

30. D. Sliwinska, P. Kaczmarek, G. Sobon, and KM. Abramski, J. Lightwave Technol. 31, 3381 (2013).

31. H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, Opt. Express 22, 7249 (2014).

32. S. Chen, C. Zhao, Y. Li, H. Huang, S. Lu, H. Zhang, and S. Wen, Opt. Mater. Express 4, 587 (2014).

33. P. Yan, R. Lin, H. Chen, H. Zhang, A. Liu, H. Yang, and S. Ruan, IEEE Photon. Technol. Lett. 27, 264 (2015).

34. X. Liu, Y. Cui, D. Han, X. Yao, and Z. Sun, Sci. Rep. 5, 9101 (2015).

35. Y. Cui, F. Lu, and X. Liu, Sci. Rep. 6, 30524 (2016).

Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备15018463号-7 公安备案沪公网安备 31011402005522号