2018-07-24 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 01 , Vol. 16 , 2018    10.3788/COL201816.013201

Characterization and application of plasma mirror for ultra-intense femtosecond lasers
Xulei Ge1;2;3, Yuan Fang2;3, Su Yang2;3, Wenqing Wei2;3, Feng Liu2;3, Peng Yuan2;3, Jingui Ma2;3, Li Zhao1, Xiaohui Yuan2;3, and Jie Zhang2;3
1 State Key Laboratory of Surface Physics and Department of Physics, [Fudan University], Shanghai 200433, China
2 Key Laboratory for Laser Plasmas (MoE) and School of Physics and Astronomy, [Shanghai Jiao Tong University], Shanghai 2 002 40, China
3 Collaborative Innovation Center of IFSA (CICIFSA), [Shanghai Jiao Tong University], Shanghai 200240, China

Chin. Opt. Lett., 2018, 16(01): pp.013201

Topic:Ultrafast optics
Keywords(OCIS Code): 320.5540  320.7080  350.5400  

The femtosecond laser pulses reflected from the self-induced plasma mirror (PM) surface are characterized. More than two orders of magnitude improvement on intensity contrast both in nanosecond and picosecond temporal scales are measured. The far-field distribution, i.e., focusability, is measured to degrade in comparison with that without using a PM. Experiments on proton accelerations are performed to test the effect of the balance between degraded focusability and increased reflectivity. Our results show that PM is an effective and robust device to improve laser contrast for applications.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (465 KB)


Posted online:2017/12/2

Get Citation: Xulei Ge, Yuan Fang, Su Yang, Wenqing Wei, Feng Liu, Peng Yuan, Jingui Ma, Li Zhao, Xiaohui Yuan, and Jie Zhang, "Characterization and application of plasma mirror for ultra-intense femtosecond lasers," Chin. Opt. Lett. 16(01), 013201(2018)

Note: We acknowledge fruitful discussions with Dr. Thomas Sokollik. This work was supported by National Basic Research Program of China (No. 2013CBA01502), the National Natural Science Foundation of China (Nos. 11121504, 11205100, and 11305103), and the National Key Scientific Instrument Development Project (No. 2012YQ030142).


1. S.-W. Bahk, P. Rousseau, T. A. Planchon, V. Chvykov, G. Kalintchenko, A. Maksimchuk, G. A. Mourou, and V. Yanovsky, Opt. Lett. 29, 2837 (2004).

2. G. A. Mourou, T. Tajima, and S. V. Bulanov, Rev. Mod. Phys. 78, 309 (2006).

3. M. Kaluza, J. Schreiber, M. I. K. Santala, G. D. Tsakiris, K. Eidmann, J. Meyer-ter-Vehn, and K. J. Witte, Phys. Rev. Lett. 93, 045003 (2004).

4. P. McKenna, F. Lindau, O. Lundh, D. Neely, A. Persson, and C. G. Wahlstr?m, Philos. Trans. R. Soc. A 364, 711 (2006).

5. L. M. Chen, F. Liu, W. M. Wang, M. Kando, J. Y. Mao, L. Zhang, J. L. Ma, Y. T. Li, S. V. Bulanov, T. Tajima, Y. Kato, Z. M. Sheng, Z. Y. Wei, and J. Zhang, Phys. Rev. Lett. 104, 215004 (2010).

6. M. Nantel, J. Itatani, A.C. Tien, J. Faure, D. Kaplan, M. Bouvier, T. Buma, P. V. Rompay, J. Nees, P. P. Pronko, D Umstadter, and G. A. Mourou, IEEE J. Sel. Top. Quantum Electron. 4, 449 (1998).

7. R. J. Gray, D. C. Carroll, X. H. Yuan, C. M. Brenner, M. Burza, M. Coury, K. L. Lancaster, X. X. Lin, Y. T. Li, D. Neely, M. N. Quinn, O. Tresca, C.-G. Wahlstr?m, and P. McKenna, New. J. Phys. 16, 113075 (2014).

8. F. Lindau, O. Lundh, A. Persson, P. McKenna, K. Osvay, D. Batani, and C.-G. Wahlstr?m, Phys. Rev. Lett. 95, 175002 (2005).

9. H. Daido, M. Nishiuchi, and A. S. Pirozhkov, Rep. Prog. Phys. 75, 056401 (2012).

10. A. Macchi, M. Borghesi, and M. Passoni, Rev. Mod. Phys. 85, 751 (2013).

11. U. Teubner, and P. Gibbon, Rev. Mod. Phys. 81, 445 (2009)

12. A. Yogo, K. Kondo, M. Mori, H. Kiriyama, K. Ogura, T. Shimomura, N. Inoue, Y. Fukuda, H. Sakaki, S. Jinno, M. Kanasaki, and P. R. Bolton, Opt. Express 22, 2060 (2014).

13. A. Jullien, O. Albert, F. Burgy, G. Hamoniaux, J.-P. Rousseau, J.-P. Chambaret, F. Auge-Rocherau, G. Cheriaux, J. Etchepare, N. Minkovski, and S. M. Saltiel, Opt. Lett. 30, 920 (2005).

14. H. C. Kapteyn, M. Murnane, A. Szoke, and R. W. Falcone, Opt. Lett. 16, 490 (1991).

15. H. Kiriyama, M. Mori, Y. Nakai, T. Shimomura, M. Tanoue, A. Akutsu, H. Okada, T. Motomura, S. Kondo, S. Kanazawa, A. Sagisaka, J. Ma, I. Daito, H. Kotaki, H. Daido, S. Bulanov, T. Kimura, and T. Tajima, Opt. Commun. 282, 625 (2009).

16. B. Dromey, S. Kar, M. Zepf, and P. Foster, Rev. Sci. Instrum. 75, 645 (2004).

17. G. Doumy, F. Quéré, O. Gobert, M. Perdrix, P. Martin, P. Audebert, J. C. Gauthier, J.-P. Geindre, and T. Wittmann, Phys. Rev. E 69, 026402 (2004).

18. Y. Nomura, L. Veisz, K. Schmid, T. Wittmann, J. Wild, and F. Krausz, New J. Phys. 9, 9 (2007).

19. R. H?rlein, B. Dromey, D. Adams, Y. Nomura, S. Kar, K. Markey, P. Foster, D. Neely, F. Krausz, G. D. Tsakiris, and M. Zepf, New J. Phys. 10, 083002 (2008).

20. C. R?del, M. Heyer, M. Behmke, M. Kübel, O. J?ckel, W. Ziegler, D. Ehrt, M. C. Kaluza, and G. G. Paulus, Appl. Phys. B. 103, 295 (2011).

21. G. G. Scott, V. Bagnoud, C. Brabetz, R. J. Clarke, J. S. Green, R. I. Heathcote, H. W. Powell, B. Zielbauer, T. D. Arber, P. McKenna, and D. Neely, New. J. Phys. 17, 033027 (2015).

22. Y. Fang, X. L. Ge, S. Yang, W. Q. Wei, T. P. Yu, F. Liu, M. Chen, J. Q. Liu, X. H. Yuan, Z. M. Sheng, and J. Zhang, Plasma Phys. Controlled Fusion 58, 075010 (2016).

23. J. Gao, F. Liu, X. Ge, Y. Deng, G. Zhang, Y. Fang, W. Wei, S. Yang, X. Yuan, M. Chen, Z. Sheng, and J. Zhang, Chin. Opt. Lett. 15, 081902 (2017).

Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备05015387