2018-09-24 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 01 , Vol. 16 , 2018    10.3788/COL201816.012701


Controllable single-photon transport in an optical waveguide coupled to an optomechanical cavity with a V-type three-level atom
Yuqing Zhang1, Zhonghua Zhu1, Zhaohui Peng1, Chunlei Jiang1, Yifeng Chai1, and Lei Tan2
1 School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 41 1 201 , China
2 Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000, China

Chin. Opt. Lett., 2018, 16(01): pp.012701

DOI:10.3788/COL201816.012701
Topic:Quantum optics
Keywords(OCIS Code): 270.1670  270.5580  020.5580  020.1670  

Abstract
An optomechanical cavity embedded with a V-type three-level atom is exploited to control single-photon transport in a one-dimensional waveguide. The effects of the atom–cavity detuning, the optomechanical effect, the coupling strengths between the cavity and the atom or the waveguide, and the atomic dissipation on the single-photon transport properties are analyzed systematically. Interestingly, the single-photon transmission spectra show multiple double electromagnetically induced transparency. Moreover, the double electromagnetically induced transparency can be switched to a single one by tuning the atom–cavity detuning.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (726 KB)

Share:


Received:2017/7/31
Accepted:2017/10/13
Posted online:2017/11/6

Get Citation: Yuqing Zhang, Zhonghua Zhu, Zhaohui Peng, Chunlei Jiang, Yifeng Chai, and Lei Tan, "Controllable single-photon transport in an optical waveguide coupled to an optomechanical cavity with a V-type three-level atom," Chin. Opt. Lett. 16(01), 012701(2018)

Note: This work was partially supported by the National Natural Science Foundation of China (Nos. 11504104, 11447221, and 11274148), the Scientific Research Fund of Hunan Provincial Education Department (No. 15C0539), the Natural Science Foundation of Hunan Province (No. 2015JJ6035), the National Natural Science Foundation of China for Fostering Talents in Basic Research (No. 11405052), and the Key Laboratory of Low Dimensional Quantum Structures and Quantum Control (No. QSQC1409).



References

1. A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, Nature 431, 162 (2004).

2. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, Nature 432, 200 (2004).

3. J. T. Shen, and S. H. Fan, Phys. Rev. Lett. 95, 213001 (2005).

4. T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, Nature 443, 671 (2004).

5. X. W. Xu, A. X. Chen, Y. Li, and Y. X. Liu, Phys. Rev. A 95, 063808 (2017).

6. J. Zhao, L. Qin, X. Cai, Q. Lin, and Z. Wang, Chin. Opt. Lett. 15, 050202 (2017).

7. W. B. Yan, and H. Fan, Phys. Rev. A 90, 053807 (2014).

8. C. H. Yan, L. F. Wei, W. Z. Jia, and J. T. Shen, Phys. Rev. A 84, 045801 (2011).

9. L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, Phys. Rev. Lett. 101, 100501 (2008).

10. M. T. Cheng, J. P. Xu, and G. S. Agarwal, Phys. Rev. A 95, 053807 (2017).

11. J. H. Li, R. Yu, C. L. Ding, and Y. Wu, Phys. Rev. A 93, 023814 (2016).

12. R. Yu, J. H. Li, C. L. Ding, and X. X. Yang, Phys. Lett. A 375, 2738 (2011).

13. J. Q. Liao, and F. Nori, Sci. Rep. 4, 6302 (2014).

14. D. E. Chang, A. H. Safavi-Naeini, M. Hafezi, and O. Painter, New J. Phys. 13, 023003 (2011).

15. I. M. Mirza, and S. J. van Enk, Phys. Rev. A 90, 043831 (2014).

16. W. Chen, and A. A. Clerk, Phys. Rev. A 89, 033854 (2014).

17. L. G. Si, H. Xiong, M. S. Zubairy, and Y. Wu, Phys. Rev. A 95, 033803 (2017).

18. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Rev. Mod. Phys. 86, 1391 (2014).

19. P. Verlot, A. Tavernarakis, T. Briant, P. F. Cohadon, and A. Heidmann, Phys. Rev. Lett. 102, 103601 (2009).

20. B. P. Abbott, R. Abbott, and T. D. Abbott, Phys. Rev. Lett. 116, 061102 (2016).

21. I. Pikovski, M. R. Vanner, M. Aspelmeyer, M. S. Kim, and ?. Brukner, Nat. Phys. 8, 393 (2012).

22. D. A. Golter, T. Oo, M. Amezcua, K. A. Stewart, and H. Wang, Phys. Rev. Lett. 116, 143602 (2016).

23. J. M. Pirkkalainen, S. U. Cho, F. Massel, J. Tuorila, T. T. Heikkil?, P. J. Hakonen, and M. A. Sillanp??, Nat. Commun. 6, 6981 (2015).

24. Z. Y. Xue, L. N. Yang, and J. Zhou, Appl. Phys. Lett. 107, 023102 (2015).

25. X. X. Ren, H. K. Li, M. Y. Yan, Y. C. Liu, Y. F. Xiao, and Q. H. Gong, Phys. Rev. A 87, 033807 (2013).

26. W. Z. Jia, and Z. D. Wang, Phys. Rev. A 88, 063821 (2013).

27. X. F. Zang, T. Zhou, B. Cai, and Y. M. Zhu, J. Opt. Soc. Am. B 30, 1135 (2013).

28. X. Y. Yu, and J. H. Li, J. Opt. Soc. Am. B 33, 165 (2016).

29. H. Zhou, S. Che, P. Zuo, Y. Han, and D. Wang, Chin. Opt. Lett. 15, 081401 (2017).


Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备05015387