2018-09-24 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 01 , Vol. 16 , 2018    10.3788/COL201816.012301


Simple Raman scattering sensor integrated with a metallic planar optical waveguide: effective modulation via minor structural adjustment
Yan Lu1, Xuefen Kan2;3, Tian Xu1, Jinghuai Fang1, Meng Wang1, Cheng Yin2;3, and Xianfeng Chen2
1 Physics Department, [Nantong University], Nantong 226007, China
2 The State Key Laboratory on Fiber Optic Local Area Communication Networks and Advanced Optical Communication Systems, Department of Physics and Astronomy, [Shanghai JiaoTong University], Shanghai 2 002 40, China
3 College of Internet of Things Engineering, [Hohai University], Changzhou 213 022, China

Chin. Opt. Lett., 2018, 16(01): pp.012301

DOI:10.3788/COL201816.012301
Topic:Optical devices
Keywords(OCIS Code): 230.7370  310.2785  290.5860  

Abstract
We report experimental realization of Raman spectra enhancement of copper phthalocyanine, using an on-chip metallic planar waveguide of the sub-millimeter scale. The oscillating ultrahigh order modes excited by the direct coupling method yield high optical intensity at resonance, which is different from the conventional strategy to create localized “hot spots.” The observed excitation efficiency of the Raman signal is significantly enhanced, owing to the high Q factor of the resonant cavity. Furthermore, effective modulation of the Raman intensity is available by adjusting the polymethyl methacrylate (PMMA) thickness in the guiding layer, i.e., by tuning the light–matter interaction length. A large modulation depth is verified through the fact that 10 times variation in the enhancement factor is observed in the experiment as the PMMA thickness varies from 7 to 23 μm.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (602 KB)

Share:


Received:2017/9/29
Accepted:2017/11/23
Posted online:2017/12/6

Get Citation: Yan Lu, Xuefen Kan, Tian Xu, Jinghuai Fang, Meng Wang, Cheng Yin, and Xianfeng Chen, "Simple Raman scattering sensor integrated with a metallic planar optical waveguide: effective modulation via minor structural adjustment," Chin. Opt. Lett. 16(01), 012301(2018)

Note: This work was supported by the Natural Science Foundation of Jiangsu Province (Nos. BK20140246 and BK20160417), the National Natural Science Foundation of China (No. 61371057, 61601251, 11404092, and 61701261), the China Postdoctoral Science Foundation Funded Project (No. 2016M601586), and the Fundamental Research Funds for the Central Universities (No. 2017B14914).



References

1. M. Fleischmann, P. J. Hendra, and A. J. Mcquillan, Chem. Phys. Lett. 26, 163 (1974).

2. S. Nie and S. R. Emory, Science 275, 1102 (1997).

3. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, Phys. Rev. Lett. 78, 1667 (1997).

4. S. Yampolsky, D. A. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. A. Apkarian, Nat. Photon. 8, 650 (2014).

5. H. Zeng, I. Tai, S. Feng, and W. Wang, Biomed. Opt. Express 6, 3494 (2015).

6. D. Lin, H. Huang, S. Qiu, S. Feng, G. Chen, and R. Chen, Opt. Express 24, 2222 (2016).

7. K. Egodage, C. Matth?us, S. Dochow, I. W. Schie, C. H?rdtner, I. Hilgendorf, and J. Popp, Chin. Opt. Lett. 15, 090008 (2017).

8. K. Yang, Y. Hu, N. Dong, G. Zhu, T. Zhu, and N. Jiang, Biosens. Bioelectron. 94, 286 (2017).

9. L. Liang, H. Qu, B. Zhang, J. Zhang, R. Deng, Y. Shen, S. Xu, C. Liang, and W. Xu, Biosens. Bioelectron. 94, 148 (2017).

10. Y. Zheng, X. Zhu, Z. Wang, Z. Hou, F. Gao, R. Nie, X. Cui, J. She, and B. Peng, Chin. Opt. Lett. 15, 083001 (2017).

11. L. T. Q. Ngan, K. N. Minh, D. T. Cao, T. A. Cao, and V. V. Le, J. Electron. Mater. 46, 3770 (2017).

12. X. Yang, Y. He, X. Wang, and R. Yuan, Appl. Surf. Sci. 416, 581 (2017).

13. Z. Xie, Y. Wang, Y. Chen, X. Xu, Z. Jin, Y. Ding, N. Yang, and F. Wu, Food Chem. 230, 547 (2017).

14. F. B. Arango, A. Kwadrin, and A. F. Koenderink, ACS Nano 6, 10156 (2012).

15. M. Banik, A. Nag, P. Z. El-Khoury, A. Rodriguez Perez, N. Guarrotxena, G. C. Bazan, and V. A. Apkarian, J. Phys. Chem. C 116, 10415 (2012).

16. M. Moskovits, Phys. Chem. Chem. Phys. 15, 5301 (2013).

17. J. A. Calkins,A.C. Peacock, P. J. Sazio,D. L.Allara, and J.V.Badding, Langmuir 27, 630 (2011).

18. K. J. McKee, M. W. Meyer, and E. A. Smith, Anal. Chem. 84, 9049 (2012).

19. Y. Liu, S. Xu, X. Xuan, B. Zhao, and W. Xu, J. Phys. Chem. Lett. 2, 2218 (2011).

20. Y. Gu, S. Xu, H. Li, S. Wang, M. Cong, J. R. Lombardi, and W. Xu, J. Phys. Chem. Lett. 4, 3153 (2013).

21. K. A. Willets and R. P. Van Duyne, Annu. Rev. Phys. Chem. 58, 267 (2007).

22. D.-B. Hu and Z.-M. Qi, J. Phys. Chem. C 117, 16175 (2013).

23. Y. Wang, M. Huang, X. Guan, Z. Cao, F. Chen, and X. Wang, Opt. Express 21, 31130 (2013).

24. F. Chen, Z. Cao, Q. Shen, X. Deng, B. Duan, W. Yuan, M. Sang, and S. Wang, Appl. Phys. Lett. 88, 161111 (2006).

25. X. Wang, C. Yin, J. Sun, H. Li, Y. Wang, M. Ran, and Z. Cao, Opt. Express 21, 13380 (2013).

26. T. Xu, C. Yin, X. Kan, T. He, Q. Han, Z. Cao, and X. Chen, Opt. Lett. 42, 2960 (2017).

27. Z. Cao, Waveguide Optics (Science Press, 2007).

28. H. Li, Z. Cao, H. Lu, and Q. Shen, Appl. Phys. Lett. 83, 2757 (2003).

29. W. Yuan, C. Yin, H. Li, P. Xiao, and Z. Cao, J. Opt. Soc. Am. B 28, 968 (2011).

30. X. Wang, C. Yin, and Z. Cao, Progress in Planar Optical Waveguides (Springer, 2016).


Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备05015387