2018-07-17 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 01 , Vol. 16 , 2018    10.3788/COL201816.011404


Stress damage process of silicon wafer under millisecond laser irradiation
Zhichao Jia1, Tingzhong Zhang2, Huazhong Zhu1, Zewen Li1, Zhonghua Shen1, Jian Lu1, and Xiaowu Ni1
1 School of Science, Nanjing University of Science &
Technology, Nanjing 21 0094, China
2 Institute of Mechanical and Electrical Engineering, Zhoukou Normal University, Zhoukou 466000, China

Chin. Opt. Lett., 2018, 16(01): pp.011404

DOI:10.3788/COL201816.011404
Topic:Lasers and laser optics
Keywords(OCIS Code): 140.3330  140.3390  160.6000  

Abstract
The stress damage process of a single crystal silicon wafer under millisecond laser irradiation is studied by experiments and numerical simulations. The formation process of low-quality surface is monitored in real-time. Stress damage can be observed both in laser-on and -off periods. Plastic deformation is responsible for the first stress damage in the laser-on period. The second stress damage in the laser-off period is a combination of plastic deformation and fracture, where the fundamental cause lies in the residual molten silicon in the ablation hole.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (572 KB)

Share:


Received:2017/9/12
Accepted:2017/12/1
Posted online:2017/12/27

Get Citation: Zhichao Jia, Tingzhong Zhang, Huazhong Zhu, Zewen Li, Zhonghua Shen, Jian Lu, and Xiaowu Ni, "Stress damage process of silicon wafer under millisecond laser irradiation," Chin. Opt. Lett. 16(01), 011404(2018)

Note: This work was supported by the National Natural Science Foundation of China (No. 61605079) and the Fundamental Research Funds for the Central Universities (No. 30916014112-020).



References

1. C. Xu, L. Jiang, N. Leng, Y. Yuan, P. Liu, C. Wang, and Y. Lu, Chin. Opt. Lett. 11, 041403 (2013).

2. X. Wang, D. H. Zhu, Z. H. Shen, J. Lu, and X. W. Ni, Appl. Surf. Sci. 257, 1583 (2010).

3. Y. Zhou, B. X. Wu, S. Tao, A. Forsman, and Y. B. Gao, Appl. Surf. Sci. 257, 2886 (2011).

4. Z. Wu, N. Zhang, M. Wang, and X. Zhu, Chin. Opt. Lett. 9, 093201 (2011).

5. Y. Liu, Y. Tong, S. Li, Y. Wang, A. Chen, and M. Jin, Chin. Opt. Lett. 14, 123001 (2016).

6. Q. Wang, Y. Zhang, Z. Wang, J. Ding, Z. Liu, and B. Hu, Chin. Opt. Lett. 14, 110201 (2016).

7. Y. M. Zhang, Z. H. Shen, and X. W. Ni, Int. J. Heat Mass Transfer 73, 429 (2014).

8. T. Zhang, X. Ni, and J. Lu, Chin. Opt. Lett. 13, 081403 (2015).

9. Z. W. Li, H. C. Zhang, Z. H. Shen, and X. W. Ni, J. Appl. Phys. 114, 033104 (2013).

10. X. Wang, Y. Qin, B. Wang, L. Zhang, Z. H. Shen, J. Lu, and X. W. Ni, Appl. Opt. 50, 3725 (2011).

11. S. Choi, and K.-Y. Jhang, Appl. Phys. Lett. 104, 251604 (2014).

12. Z. C. Jia, Z. W. Li, X. M. Lv, and X. W. Ni, Appl. Opt. 56, 4900 (2017).

13. F. W. DelRio, R. F. Cook, and B. L. Boyce, Appl. Phys. Rev. 2, 021303 (2015).

14. A. Masolin, P.-O. Bouchard, R. Martini, and M. Bernacki, J. Mater. Sci. 48, 979 (2013).

15. Z. Jia, Z. Li, X. Lv, and X. Ni, Appl. Opt. 56, 4900 (2017).

16. L. Y. Guo, Z. Chen, J. Long, and T. Yang, Acta Phys. Sin. 64, 0178102 (2015).

17. S. Choi, and K. Y. Jhang, Opt. Eng. 53, 017103 (2014).

18. X. Wang, Z. H. Shen, J. Lu, and X. W. Ni, J. Appl. Phys. 108, 033103 (2010).


Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387