2019-01-19 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 01 , Vol. 16 , 2018    10.3788/COL201816.011401

Ablation enhancement by defocused irradiation assisted femtosecond laser fabrication of stainless alloy
Dongkai Chu1;2, Kai Yin1;2, Xinran Dong2, Zhi Luo2, Yuxin Song2, and Ji'an Duan2
1 Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 41 0083, China
2 The State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China

Chin. Opt. Lett., 2018, 16(01): pp.011401

Topic:Lasers and laser optics
Keywords(OCIS Code): 140.0140  260.0260  

We evaluate the effects of the holes geometry drilled by a femtosecond laser on a stainless alloy with various defocused irradiation time, which ranges from 0 min to 1 h. The laser ablation efficiency is increased by a factor of 3 when the irradiation time is elevated from 0 to 30 min. Also, the morphology of the hole is observed by a scanning electron microscope, where the result indicates that the defocused irradiation time has a significant influence on the morphology changes. The reason for such changes is discussed based on the pretreatment effect and the confined plasma plume. As an application example, the microchannel is fabricated by a femtosecond laser combined with the defocused irradiation to demonstrate the advantage of the proposed method in fabricating functional structures.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (796 KB)


Posted online:2017/11/8

Get Citation: Dongkai Chu, Kai Yin, Xinran Dong, Zhi Luo, Yuxin Song, and Ji'an Duan, "Ablation enhancement by defocused irradiation assisted femtosecond laser fabrication of stainless alloy," Chin. Opt. Lett. 16(01), 011401(2018)

Note: This work was supported by the National Natural Science Foundation of China (NSFC) (Nos. 91323301 and 51505505) and the Fundamental Research Funds for the Central Universities of Central South University.


1. K. Yin, Y. X. Song, X. R. Dong, C. Wang, and J. A. Duan, Sci. Rep. 6, 36557 (2016).

2. K. Yin, X. R. Dong, F. Zhang, C. Wang, and J. A. Duan, Appl. Phys. Lett. 110, 121909 (2017).

3. L. Yang, S. Y. Ji, K. N. Xie, W. Q. Du, B. J. Liu, Y. L. Hu, J. W. Li, G. Zhao, D. Wu, W. H. Huang, S. L. Liu, H. Y. Jiang, and J. R. Chu, Opt. Express 25, 8144 (2017).

4. Y. Lu, L. D. Yu, Z. Zhang, S. Z. Wu, G. Q. Li, P. C. Wu, Y. L. Hu, J. W. Li, and D. Wu, RSC Adv. 7, 11170 (2017).

5. X. Dong, Z. Xie, Y. Song, K. Yin, D. Chu, and J. Duan, Chin. Opt. Lett. 15, 071403 (2017).

6. K. Yin, J. A. Duan, X. Y. Sun, C. Wang, and Z. Luo, Appl. Phys. A 119, 69 (2015).

7. L. Wang, B. B. Xu, Q. D. Chen, Z. C. Ma, R. Zhang, Q. X. Liu, and H. B. Sun, Opt. Lett. 36, 3305 (2011).

8. X. H. Li, K. H. Hu, B. Lyu, J. D. Zhang, Y. W. Wang, P. Wang, S. Xiao, Y. L. Gao, and J. He, J. Phys. Chem. C 120, 18243 (2016).

9. L. Wang, Q. D. Chen, R. Yang, B. B. Xu, H. Y. Wang, H. Yang, C. S. Huo, H. B. Sun, and H. L. Tu, Appl. Phys. Lett. 104, 031904 (2014).

10. S. Nolte, C. Momma, H. Jacobs, A. Tunnermann, B. Chichkov, B. Wellegehausen, and H. Welling, J. Opt. Soc. Am. B 14, 2716 (1997).

11. D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, Appl. Surf. Sci. 150, 101 (1999).

12. A. Weck, T. Crawford, D. Wilkinson, H. Haugen, and J. Preston, Appl. Phys. A 90, 537 (2008).

13. S. Besner, J. Y. Degorce, A. Kabashin, and M. Meunier, Appl. Surf. Sci. 247, 163 (2005).

14. Y. Hu, H. Yue, J. Duan, C. Wang, J. Zhou, Y. Lu, K. Yin, X. Dong, W. Su, and X. Sun, Chin. Opt. Lett. 15, 021404 (2017).

15. K. Yin, J. A. Duan, C. Wang, X. R. Dong, Y. X. Song, and Z. Luo, Appl. Phys. Lett. 108, 241601 (2016).

16. U. Chakravarty, P. Naik, C. Mukherjee, S. Kumbhare, and P. Gupta, J. Appl. Phys. 108, 053107 (2010).

17. D. Chu, X. Sun, Y. Hu, X. Dong, K. Yin, Z. Luo, J. Zhou, C. Wang, and J. Duan, Chin. Opt. Lett. 15, 071403 (2017).

18. K. Sugioka, M. Iida, H. Takai, and K. Micorikawa, Opt. Lett. 36, 2734 (2011).

19. M. Fang, and S. Baldelli, J. Phys. Chem. C. 121, 1591 (2017).

20. M. Fang, and S. Baldelli, J. Phys. Chem. Lett. 6, 1454 (2015).

21. S. Guizard, P. D’Oliveira, P. Daguzan, P. Marthn, P. Meynadier, and G. Petite, Nucl. Instrum. Methods Phys. Res. B 116, 43 (1996).

22. A. Y. Vorobyev, V. S. Makin, and C. L. Guo, Phys. Rev. Lett. 102, 234301 (2009).

23. T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, Appl. Phys. Lett. 73, 1673 (1998).

24. Y. C. Guan, G. K. L. Ng, H. Y. Zheng, M. H. Hong, X. Hong, and Z. Zhang, Appl. Surf. Sci. 270, 526 (2013).

25. L. Liu, S. Li, X. N. He, X. Huang, C. F. Zhang, L. S. Fan, M. X. Wang, Y. S. Zhou, K. Chen, L. Jiang, J. F. Silvain, and Y. F. Lu, Opt. Express 22, 7686 (2014).

26. Q. X. Wang, A. M. Chen, S. Y. Li, H. X. Qi, Y. Qi, Z. Hu, and M. X. Jin, Appl. Opt. 54, 8235 (2015).

27. L. Liu, X. Huang, S. Li, Y. Lu, K. Chen, L. Jiang, J. F. Silvain, and Y. F. Lu, Opt. Express 23, 015047 (2015).

28. G. L. Deng, G. Y. Feng, K. Liu, and S. H. Zhou, Appl. Opt. 53, 3004 (2010).

29. R. C. Reed, The Super Alloys: Fundamentals and Applications (Cambridge University, 2006).

30. M. J. Wahll, D. J. Maykuth, and H. J. Hucek, Handbook of Superalloys (Battelle, 1979).

31. S. Baik, M. J. Olszta, S. M. Bruemmer, and D. N. Seidman, Scr. Mater. 66, 809 (2012).

32. L. S. Jiao, S. K. Moom, E. Y. K. Ng, H. Y. Zheng, and H. S. Son, Appl. Phys. Lett. 104, 181902 (2014).

Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备15018463号-7 公安备案沪公网安备 31011402005522号