2018-07-24 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 01 , Vol. 16 , 2018    10.3788/COL201816.011301


Coupling length variation and multi-wavelength demultiplexing in photonic crystal waveguides
Ziming Wang1, Kang Su1, Bo Feng1, Tianhua Zhang2, Weiqing Huang1, Weicheng Cai1, Wei Xiao1, Hongfei Liu1, and Jianjun Liu1
1 Key Laboratory for Micro-/Nano- Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 41 0082, China
2 SK Hynix Memory Solutions, 3103 North First Street, San Jose, CA 95134, USA

Chin. Opt. Lett., 2018, 16(01): pp.011301

DOI:10.3788/COL201816.011301
Topic:Integrated optics
Keywords(OCIS Code): 130.5296  060.4510  060.4230  250.5300  

Abstract
In this Letter, the effects of material/structure parameters of photonic crystal (PhC) parallel waveguides on the coupling length are investigated. The results show that, increasing the effective relative permittivity of the PhC leads to a downward shift of the photonic bandgap and a variation of the coupling length. A compact PhC 1.31/1.55 μm wavelength division multiplexer (WDM)/demultiplexer with simple structure is proposed, where the output power ratios are more than 24 dB. This WDM can multiplex/demultiplex other light waves efficiently.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (670 KB)

Share:


Received:2017/6/18
Accepted:2017/9/22
Posted online:2017/11/7

Get Citation: Ziming Wang, Kang Su, Bo Feng, Tianhua Zhang, Weiqing Huang, Weicheng Cai, Wei Xiao, Hongfei Liu, and Jianjun Liu, "Coupling length variation and multi-wavelength demultiplexing in photonic crystal waveguides," Chin. Opt. Lett. 16(01), 011301(2018)

Note: This work was supported by the National Natural Science Foundation of China (No. 61405058), the Hunan Provincial Natural Science Foundation of China (No. 2017JJ2048), and the Fundamental Research Funds for the Central Universities (No. 531107050979).The authors acknowledge Prof. X. Zhang for software sponsorship.



References

1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).

2. S. John, Phys. Rev. Lett. 58, 2486 (1987).

3. S. Marin, C. Luo, J. D. Joannopoulos, and S. Fan, Opt. Lett. 28, 637 (2003).

4. J. D. Joannopoulos, R. D. Meade, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light , 2nd ed. (Princeton University Press, 2008).

5. K. Receveur, K. Wei, M. Hadjloum, M. E. Gibari, A. De Rossi, H. W. Li, and A. S. Daryoush, Chin. Opt. Lett. 15, 010003 (2017).

6. R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, J. Appl. Phys. 75, 4753 (1994).

7. T. Baba, N. Fukaya, and J. Yonekura, Electron. Lett. 35, 654 (1999).

8. Y. Wang, D. Zhang, S. Xu, B. Xu, Z. Dong, and T. Huang, Chin. Opt. Lett. 15, 062301 (2017).

9. A. Martinez, A. Griol, P. Sanchis, and J. Marti, Opt. Lett. 28, 405 (2003).

10. H. Takano, B. S. Song, T. Asano, and S. Noda, Opt. Express 14, 3491 (2006).

11. F. Lan, Z. Yang, L. Qi, and Z. Shi, Chin. Opt. Lett. 12, 040401 (2014).

12. J. M. Brosi, C. Koos, L. C. Andreani, M. Waldow, J. Leuthold, and W. Freude, Opt. Express 16, 4177 (2008).

13. K. Nozaki, S. Matsuo, T. Fujii, K. Takeda, M. Ono, A. Shakoor, E. Kuramochi, and M. Notomi, Optica 3, 483 (2016).

14. X. Y. Zhang, A. Hosseini, H. Subbaraman, S. Y. Wang, Q. W. Zhan, J. D. Luo, A. K-Y. Jen, and R. T. Chen, J. Lightwave Technol. 32, 3774 (2014).

15. S. Boscolo, M. Midrio, and C. G. Someda, IEEE J. Quantum Electron. 38, 47 (2002).

16. F. Cuesta-Soto, A. Martínez, J. García, F. Ramos, P. Sanchis, J. Blasco, and J. Martí, Opt. Express 12, 161 (2004).

17. X. Y. Zhang, S. Chakravarty, C. J. Chung, Z. Y. Pan, H. Yan, and R. T. Chen, Appl. Phys. Lett. 106, 21104 (2015).

18. J. Lu, H. Ren, S. Guo, D. Gu, H. Wen, Y. Qin, S. Zhou, W. Hu, and C. Jiang, Chin. Opt. Lett. 12, 102301 (2014).

19. M. Koshiba, J. Lightwave Technol. 19, 1970 (2001).

20. J. Zimmermann, M. Kamp, A. Forchel, and R. M?rz, Opt. Commun. 230, 387 (2004).

21. F. S. S. Chien, Y. J. Hsu, W. F. Hsieh, and S. C. Cheng, Opt. Express 12, 1119 (2004).

22. H. J. Kim, I. Park, B. H. O, S. G. Park, E. H. Lee, and S. G. Lee, Opt. Express 12, 5625 (2004).

23. W. Y. Chiu, T. W. Huang, Y. H. Wu, Y. J. Chan, C. H. Hou, H. T. Chien, and C. C. Chen, Opt. Express 15, 15500 (2007).

24. W. W. Huang, Y. Zhang, and B. J. Li, Opt. Express 16, 1600 (2008).

25. S. Q. Zeng, Y. Zhang, and B. J. Li, Opt. Express 17, 365 (2009).

26. M. H. M. Yusoff, H. Abu Hassan, M. R. Hashim, and M. K. Abd-Rahman, Opt. Commun.284, 284, 1223 (2011).

27. W. Li, Optik 125, 6575 (2014).

28. G. Manzacca, D. Paciotti, A. Marchese, M. S. Moreolo, and G. Cincotti, Photon. Nanostruct. Fundam. Applic. 5, 164 (2007).

29. Y. Takahashi, T. Asano, D. Yamashita, and S. Noda, Opt. Express 22, 4692 (2014).

30. K. M. Ho, C. T. Chan, and C. M. Soukoulis, Phys. Rev. Lett. 65, 3152 (1990).

31. A. Taflove, and S.C. Hagness, Computational Electrodynamics: The Finite Difference Time Domain Method , 2nd ed. (Artech House, 2000).

32. J. J. Liu, Z. G. Fan, H. S. Xiao, W. Zhang, C. Y. Guan, and L. B. Yuan, Appl. Opt. 50, 4868 (2011).

33. E. Calleja, J. Grandal, M. A. Sánchez-García, M. Niebelschütz, V. Cimalla, and O. Ambacher, Appl. Phys. Lett. 90, 262110 (2007).

34. E. Calleja, J. Risti?, S. Fernández-Garrido, L. Cerutti, M. A. Sánchez-García, J. Grandal, A. Trampert, U. Jahn, G. Sánchez, A. Griol, and B. Sánchez, Phys. Status Solidi 244, 2816 (2007).

35. B. H. Le, S. Zhao, N. H. Tran, and Z. Mi, Appl. Phys. Lett. 105, 231124 (2014).

36. H. Subbaraman, X. C. Xu, A. Hosseini, X. Y. Zhang, Y. Zhang, D. Kwong, and R. T. Chen, Opt. Express 23, 2487 (2015).


Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备05015387