2018-09-24 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 01 , Vol. 16 , 2018    10.3788/COL201816.010604


Polarization-maintained coupled optoelectronic oscillator incorporating an unpumped erbium-doped fiber
Tianhua Du, Dan Zhu, and Shilong Pan
The Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Chin. Opt. Lett., 2018, 16(01): pp.010604

DOI:10.3788/COL201816.010604
Topic:Fiber optics and optical communication
Keywords(OCIS Code): 060.5625  070.1170  060.2320  

Abstract
A polarization-maintained coupled optoelectronic oscillator (COEO) with its performance significantly improved by a short-length unpumped erbium-doped fiber (EDF) is reported and experimentally investigated. A 10 GHz optical pulse train with a supermode suppression ratio of 61.8 dB and a 10 GHz radio frequency signal with a sidemode suppression ratio of 94 dB and a phase noise of ?121.9 dBc/Hz at 10 kHz offset are simultaneously generated. Thanks to saturable absorption of the 1 m unpumped EDF, which introduces relatively large cavity loss to the undesired modes and noise, the supermode suppression ratio and the phase noise are improved by 9.4 and 7.9 dB, respectively.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (460 KB)

Share:


Received:2017/8/28
Accepted:2017/11/16
Posted online:2017/12/4

Get Citation: Tianhua Du, Dan Zhu, and Shilong Pan, "Polarization-maintained coupled optoelectronic oscillator incorporating an unpumped erbium-doped fiber," Chin. Opt. Lett. 16(01), 010604(2018)

Note: This work was supported by the National Natural Science Foundation of China (No. 61422108), the Natural Science Foundation of Jiangsu Province (No. BK20160082), the Jiangsu Provincial Program for High-level Talents in Six Areas (No. DZXX-030), and the Fundamental Research Funds for Central Universities (Nos. NE2017002 and NS2016037).



References

1. X. S. Yao, and L. Maleki, Opt. Lett. 22, 1867 (1997).

2. X. S. Yao, L. Davis, and L. Maleki, J. Lightwave Technol. 18, 73 (2000).

3. B. Matsko, D. Eliyahu, and L. Maleki, J. Opt. Soc. Am. B 30, 3316 (2013).

4. W. Loh, S. Yegnanarayanan, J. J. Plant, F. J. O’Donnell, M. E. Grein, J. Klamkin, S. M. Duff, and P. W. Juodawlkis, Opt. Express 20, 19420 (2012).

5. P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, and A. Malacarne, Nature 507, 341 (2014).

6. S. L. Pan, D. Zhu, S. F. Liu, K. Xu, Y. T. Dai, T. L. Wang, J. G. Liu, N. H. Zhu, Y. Xue, and N. J. Liu, IEEE Microw. Mag. 16, 61 (2015).

7. H. Zhang, W. Zou, G. Yang, and J. Chen, Chin. Opt. Lett. 14, 030602 (2016).

8. J. S. Wey, J. Goldhar, and G. L. Burdge, J. Lightwave Technol. 15, 1171 (1997).

9. N. Onodera, Electron. Lett. 33, 962 (1997).

10. S. L. Pan, C. Y. Lou, and Y. Z. Gao, Opt. Express 14, 1113 (2006).

11. M. Nakazawa, K. Tamura, and E. Yoshida, Electron. Lett. 32, 461 (1996).

12. C. R. Doerr, H. A. Haus, E. P. Ippen, M. Shirasaki, and K. Tamura, Opt. Lett. 19, 31 (1994).

13. Y. Dai, R. Wang, F. Yin, J. Dai, L. Yu, J. Li, and K. Xu, Opt. Express 23, 27589 (2015).

14. J. Dai, Y. Dai, F. Yin, Y. Zhou, J. Li, Y. Fan, and K. Xu, Chin. Opt. Lett. 14, 110701 (2016).

15. S. Cai, S. Pan, D. Zhu, and X. Chen, in Asia Communications and Photonics Conference, OSA Technical Digest (online) (2012), paper?ATh2C.5.

16. D. Zhu, Z. W. Wei, T. H. Du, and S. L. Pan, in The Avionics and Vehicle Fiber-Optics and Photonic Conference and the International Topical Meeting on Microwave Photonics 2016 (AVFOP&MWP2016) (2016), p.?177.

17. S. Zhao, P. Lu, L. Chen, D. Liu, and J. Zhang, Front. Optoelectron. 6, 180 (2013).


Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备05015387