2018-11-20 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 01 , Vol. 16 , 2018    10.3788/COL201816.010601


Design and fabrication of wavelength tunable AWGs based on the thermo-optic effect
Pei Yuan1;2, Yue Wang1, Yuanda Wu1;2, Junming An1;2, and Xiongwei Hu1
1 State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Science, Beijing 1 00083, China
2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100083, China
Corresponding authors: wy1022@semi.ac.cn

Chin. Opt. Lett., 2018, 16(01): pp.010601

DOI:10.3788/COL201816.010601
Topic:Fiber optics and optical communication
Keywords(OCIS Code): 060.1810  060.4230  230.7390  230.7408  

Abstract
In this Letter, a 16 channel 200 GHz wavelength tunable arrayed waveguide grating (AWG) is designed and fabricated based on the silicon on insulator platform. Considering that the performance of the AWG, such as central wavelength and crosstalk, is sensitive to the dimension variation of waveguides, the error analysis of the AWG with width fluctuations is worked out using the transfer function method. A heater is designed to realize the wavelength tunability of the AWG based on the thermo-optic effect of silicon. The measured results show that the insertion loss of the AWG is about 6 dB, and the crosstalk is 7.5 dB. The wavelength tunability of 1.1 nm is achieved at 276 mW power consumption, and more wavelength shifts will gain at larger power consumption.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (1299 KB)

Share:


Received:2017/9/29
Accepted:2017/10/13
Posted online:2017/11/9

Get Citation: Pei Yuan, Yue Wang, Yuanda Wu, Junming An, and Xiongwei Hu, "Design and fabrication of wavelength tunable AWGs based on the thermo-optic effect," Chin. Opt. Lett. 16(01), 010601(2018)

Note: This work was supported by the National Key R & D Program of China (No. 2016YFB0402504) and the National Nature Science Foundation of China (Nos. 61435013 and 61405188).



References

1. M. Asghari, in Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference (2008), paper?NThA4.

2. N. B. Feilchenfeld, K. Nummy, T. Barwicz, D. Gill, E. Kiewra, R. Leidy, J. S. Orcutt, J. Rosenberg, A. D. Stricker, C. Whiting, J. Ayala, B. Cucci, D. Dang, T. Doan, M. Ghosal, M. Khater, K. Mclean, B. Porth, Z. Sowinski, C. Willets, C. Xiong, C. Yu, S. Yum, K. Giewont, and W. M. J. Green, Proc. SPIE 10149, 101490D (2017).

3. Z. Zhou, X. Wang, H. Yi, Z. Tu, W. Tan, Q. Long, M. Yin, and Y. Huang, Opt. Eng. 52, 5007 (2013).

4. B. Ren, Y. Hou, and Y. Liang, J. Semicond. 37, 124001 (2016).

5. B. Song, C. Stagarescu, S. Ristic, A. Behfar, and J. Klamkin, Opt. Express 24, 10435 (2016).

6. A. Spott, J. Peters, M. L. Davenport, E. J. Stanton, C. D. Merritt, and W. W. Bewl, Optica 3, 545 (2016).

7. M. J. Shin, Y. Ban, B.-M. Yu, J. Rhim, L. Zimmermann, and W.-Y. Choi, IEEE J. Sel. Top. Quantum Electron. 22, 116 (2016).

8. Z. Wang, Y. L. Gao, A. S. Kashi, J. C. Cartledge, and A. P. Knights, J. Lightwave Technol. 34, 3675 (2016).

9. J. Lee, M. Kim, and W. Choi, Chin. Opt. Lett. 15, 100401 (2017).

10. D. Yin, T. He, Q. Han, Q. Lv, Y. Zhang, and X. Yang, J. Semicond. 37, 114006 (2016).

11. D. Feng, N.-N. Feng, C. C. Kung, H. Liang, W. Qian, J. Fong, B. J. Luff, and M. Asghari, Opt. Express 19, 6125 (2011).

12. Q. Fang, J. Song, G. Zhang, M. Yu, Y. Liu, G.-Q. Lo, and D.-L. Kwong, IEEE Photon. Technol. Lett. 21, 319 (2009).

13. P. Yuan, Y. Wu, Y. Wang, J. An, and X. Hu, J. Semicond. 36, 084005 (2015).

14. H. Li, E. Li, Z. Liu, K. Wei, X. Dong, and Y. Bai, Opt. Eng. 51, 123001 (2012).

15. H. Li, Y. Bai, X. Dong, E. Li, Y. Li, W. Zhou, and Y. Liu, Opt. Eng. 52, 064602 (2013).

16. H. Li, W. Gao, E Li, and C. Tang, IEEE Photon. J. 7, 7802707 (2015).

17. Z. Zhang, J. Hu, H. Chen, F. Li, L. Zhao, J. Gui, and Q. Fang, Chin. Opt. Lett. 15, 041301 (2017).

18. G. Song, J. Zou, and J. He, Chin. Opt. Lett. 15, 030603 (2017).

19. J. Dieckr?ger, P. C. Clemens, G. Heise, H. W. Schneider, and R. Maerz, IEEE Photon. Technol. Lett. 11, 248 (1999).

20. H. Bissessur, F. Gaborit, B. Martin, G. Ripoche, and P. Pagnod-Rossiaux, Electron. Lett. 31, 32 (1995).

21. H. M. Zhang, C. S. Ma, Z. K. Qin, X. Z. Zhang, D. Zhang, and D. M. Zhang, Opt. Eng. 46, 054601 (2007).

22. Y. Yang, X. Hu, J. Song, Q. Fang, M. Yu, X. Tu, G. Q. Lo, and Rusli, IEEE Photon. Technol. Lett. 27, 2351 (2015).

23. R. Adar, C. H. Henry, C. Dragone, R. C. Kistler, and M. A. Milbrodt, J. Lightwave Technol. 11, 212 (1993).

24. S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts, Opt. Express 20, B493 (2012).

25. J. Park, J. Joo, H. Park, M. Kwack, and G. Kim, Proc. SPIE 9367, 936705 (2015).


Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备15018463号-7 公安备案沪公网安备 31011402005522号