2018-07-17 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 01 , Vol. 16 , 2018    10.3788/COL201816.010605


Robust fiber-based frequency synchronization system immune to strong temperature fluctuation
Xi Zhu1;2, Bo Wang1, Yichen Guo1, Yibo Yuan2, Romeo Gamatham3, Bruce Wallace3, Keith Grainge4, and Lijun Wang1;2
1 State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 1 00084, China
2 Department of Physics, Tsinghua University, Beijing 100084, China
3 SKA South Africa, Blend on Baker, Rosebank 2196, Johannesburg, South Africa
4 Jodrell Bank Centre for Astrophysics, Alan Turing Building, School of Physics &
Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL, UK

Chin. Opt. Lett., 2018, 16(01): pp.010605

DOI:10.3788/COL201816.010605
Topic:Fiber optics and optical communication
Keywords(OCIS Code): 060.0060  120.0120  

Abstract
In order to make the fiber-based frequency synchronization system suitable for the use of large-scale scientific and engineering projects in which the ambient temperature of the fiber links change dramatically, we design a non-harmonic frequency dissemination system immune to strong temperature fluctuation. After the lab tests, in which the ambient temperature of the fiber fluctuates 40°C/day and 20°C/h, respectively, the relative frequency stabilities of this system reaches 4.0?×?10?14/s and 3.0?×?10?16/104??s. It is demonstrated that the proposed non-harmonic scheme shows a strong robustness to complicated working environment with strong temperature fluctuation.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (0 KB)

Share:


Received:2017/9/8
Accepted:2017/11/16
Posted online:2017/12/5

Get Citation: Xi Zhu, Bo Wang, Yichen Guo, Yibo Yuan, Romeo Gamatham, Bruce Wallace, Keith Grainge, and Lijun Wang, "Robust fiber-based frequency synchronization system immune to strong temperature fluctuation," Chin. Opt. Lett. 16(01), 010605(2018)

Note: This work was supported by the Program of International S&T Cooperation under Grant No.?2016YFE0100200



References

1. B. Alachkar, P. Boven, and A. Wilkinson, “SKA1 Level 1 synchronisation and timing requirements analysis and verification,” Available: https://xorg.manchester.ac.uk/sites/ska-sadt-dms/ (2017).

2. B. Wang, X. Zhu, C. Gao, Y. Bai, J. W. Dong, and L. J. Wang, Sci. Rep.5, 13851 (2015).

3. M. Fujieda, M. Kumagai, and S. Nagano, IEEE Trans. Ultrason. Ferroelectr. Freq. Control.57, 168 (2010).

4. V. Smotlacha, and A. Kuna, in Proceedings of European Frequency and Time Forum (2012), p.?375.

5. O. Lopez, A. Haboucha, F. Kéfélian, H. Jiang, B. Chanteau, V. Roncin, C. Chardonnet, A. Amy-Klein, and G. Santarelli, Opt. Express18, 16849 (2010).

6. B. Wang, C. Gao, W. L. Chen, J. Miao, X. Zhu, Y. Bai, J. W. Zhang, Y. Y. Feng, T. C. Li, and L. J. Wang, Sci. Rep.2, 556 (2012).

7. K. Predehl, G. Grosche, S. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. H?nsch, T. Udem, R. Holzwarth, and H. Schnatz, Science336, 441 (2012).

8. S. Droste, F. Ozimek, T. Udem, K. Predehl, T. W. H?nsch, H. Schnatz, G. Grosche, and R. Holzwarth, Phys. Rev. Lett.111, 110801 (2013).

9. S. W. Schediwy, D. Gozzard, K. G. Baldwin, B. J. Orr, R. Bruce Warrington, G. Aben, and A. N. Luiten, Opt. Lett.38, 2893 (2013).

10. F. F. Yin, A. X. Zhang, Y. T. Dai, T. P. Ren, K. Xu, J. Q. Li, J. T. Lin, and G. S. Tang, Opt. Express22, 878 (2014).

11. B. Ning, S.Y. Zhang, D. Hou, J.T. Wu, Z.B. Li, and J.Y. Zhao, Sci. Rep.4, 5109 (2014).

12. C. E. Calosso, E. Bertacco, D. Calonico, C. Clivati, G. A. Costanzo, M. Frittelli, F. Levi, A. Mura, and A. Godone, Opt. Lett.39, 1177 (2014).

13. ?. ?liwczyński, and P. Krehlik, IEEE Trans. Ultrason. Ferroelectr. Freq. Control62, 412 (2015).

14. S. M. F. Raupach, A. Koczwara, and G. Grosche, Phys. Rev. A92, 41 (2015).

15. Y. Dong, Z. Liu, X. Wang, N. Deng, W. Xie, and W. Hu, Chin. Opt. Lett.14, 120006 (2016).

16. Q. Liu, S. Han, J. Wang, Z. Feng, W. Chen, N. Cheng, Y. Gui, H. Cai, and S. Han, Chin. Opt. Lett.33, 070602 (2016).

17. X. Yuan, and B. Wang, Chin. Opt. Lett.15, 101202 (2017).

18. L. G. Cohen, and J. W. Fleming, Bell Syst. Tech. J.58, 945 (1979).

19. A. H. Hartog, A. J. Conduit, and D. N. Payne, Opt. Quantum Electron.11, 265 (1979).

20. T. Musha, J. Kamimura, and M. Nakazawa, Appl. Opt.21, 694 (1982).

21. P. L. Heinzmann, and R. U. Hofstetter, Proc. SPIE854, 71 (1985).

22. J. J. Carr, S. L. Saikkonen, and D. H. Williams, Fiber Integr. Opt.9, 393 (1990).

23. K. P. Zhong, N. Jia, T. J. Li, M. G. Wang, J. F. Chi, and J. Sun, Proc. SPIE7847, 78472N (2010).

24. T. J. Pinkert, O. B?ll, L. Willmann, G. S. M. Jansen, E. A. Dijck, B. G. H. M. Groeneveld, R. Smets, F. C. Bosveld, W. Ubachs, K. Jungmann, K. S. E. Eikema, and J. C. J. Koelemeij, Appl. Opt.54, 728 (2015).

25. E. A. Elias, R. Cichota, H. H. Torriani, and Q. de Jong van Lier, Soil Sci. Soc. Am. J.68, 784 (2004).


Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387