2017-12-12 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 12 , Vol. 15 , 2017    10.3788/COL201715.122701

Low-pump sum frequency generation of frequency-stabilized 453 nm blue laser for photonic quantum interface
Jian Wang1;2, Yuhao Pan1;2, Yunfeng Huang1;2, Chuanfeng Li1;2, and Guangcan Guo1;2
1 CAS Key Laboratory of Quantum Information, [University of Science and Technology of China], Hefei 230026, China
2 Synergetic Innovation Centre in Quantum Information and Quantum Physics, [University of Science and Technology of China], Hefei 2 3002 6, China

Chin. Opt. Lett., 2017, 15(12): pp.122701

Topic:Quantum optics
Keywords(OCIS Code): 270.5585  140.3613  190.7220  

Generation of a cavity-enhanced nondegenerate narrow-band photon pair source is a potential way to realize a perfect photonic quantum interface for a hybrid quantum network. However, to ensure the high quality of the photon source, the pump laser for the narrow-band photon source should be generated in a special way. Here, we experimentally generate the blue 453 nm laser with a sum frequency generation process in a periodically poled lithium niobate waveguide. A 13 mW laser at 453 nm can be achieved with a low-power 880 nm laser and 935 nm laser input, and the internal conversion efficiency is 21.6% after calculation. The frequency of a 453 nm laser is stabilized by locking two pump lasers on one ultrastable optical cavity. The single pass process without employing cavity enhancement can ensure a good robustness of the whole system.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (277 KB)


Posted online:2017/11/9

Get Citation: Jian Wang, Yuhao Pan, Yunfeng Huang, Chuanfeng Li, and Guangcan Guo, "Low-pump sum frequency generation of frequency-stabilized 453 nm blue laser for photonic quantum interface," Chin. Opt. Lett. 15(12), 122701(2017)

Note: This work was supported by the National Key Research and Development Program of China (No. 2017YFA0304100), the National Natural Science Foundation of China (Nos. 61327901, 11325419, and 11474268), the Key Research Program of Frontier Sciences, CAS (No. QYZDY-SSW-SLH003), the National Program for Support of Topnotch Young Professionals (No. BB2470000005), and the Fundamental Research Funds for the Central Universities (Nos. WK2470000026 and WK2470000018).


1. J. Kimble, Nature (London) 453, 1023 (2008).

2. M. Wallquist, K. Hammerer, P. Rabl, M. Lukin, and P. Zoller, Phys. Scr. T137, 014001 (2009).

3. H. M. Meyer, R. Stockill, M. Steiner, C. Le Gall, C. Matthiesen, E. Clarke, A. Ludwig, J. Reichel, M. Atatre, and M. K?hl, Phys. Rev. Lett. 114, 123001 (2015).

4. J.-S. Tang, Z.-Q. Zhou, Y.-T. Wang, Y.-L. Li, X. Liu, Y.-L. Hua, Y. Zou, S. Wang, D.-Y. He, G. Chen, Y.-N. Sun, Y. Yu, M.-F. Li, G.-W. Zha, H.-Q. Ni, Z.-C. Niu, C.-F. Li, and G.-C. Guo, Nat. Commun. 6, 8652 (2015).

5. Z.-L. Xiang, S. Ashhab, J. Q. You, and F. Nori, Rev. Mod. Phys. 85, 623 (2013).

6. G. Kurizkia, P. Bertetb, Y. Kubob, K. Molmer, D. Petrosyand, P. Rablf, and J. Schmiedmayerf, Proc. Natl. Acad. Sci. USA 112, 3866 (2014).

7. S. Kotler, R. W. Simmonds, D. Leibfried, and D. J. Wineland, Phys. Rev. A 95, 022327 (2017).

8. R. Zhao, and R. Liang, Chin. Opt. Lett. 14, 062701 (2016).

9. C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, Phys. Rev. Lett. 98, 190503 (2007).

10. Z.-Y. Ou, and Y.-J. Lu, Phys. Rev. Lett. 83, 2556 (1999).

11. C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, Phys. Rev. Lett. 97, 223601 (2006).

12. X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, Phys. Rev. Lett. 101, 190501 (2008).

13. M. Scholz, L. Koch, and O. Benson, Phys. Rev. Lett. 102, 063603 (2009).

14. F. Wolfgramm, Y. A. de Icaza Astiz, F. A. Beduini, A. Cerè, and M. W. Mitchell, Phys. Rev. Lett. 106, 053602 (2011).

15. J. Fekete, D. Riel?nder, M. Cristiani, and H. de Riedmatten, Phys. Rev. Lett. 110, 220502 (2013).

16. H. Zhang, X.-M. Jin, J. Yang, H.-N. Dai, S.-J. Yang, T.-M. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G.-S. Pan, Z.-S. Yuan, Y.-J. Deng, Z.-B. Chen, X.-H. Bao, and S. Chen, B. Zhao and J.-W. Pan, Nat. Photon. 5, 628 (2011).

17. D. Riel?nder, K. Kutluer, P. M. Ledingham, M. Gündo?an, J. Fekete, M. Mazzera, and H. de Riedmatten, Phys. Rev. Lett. 112, 040504 (2014).

18. J. Wang, P.-Y. J. Lv, J.-M. Cui, B.-H. Liu, J.-S. Tang, Y.-F. Huang, C.-F. Li, and G.-C. Guo, Phys. Rev. Appl. 4, 064011 (2015).

19. J.-Y. Zhao, I. D. Chremmos, Z. Zhang, Y. Hu, D.-H. Song, P. Zhang, N. K. Efremidis, and Z.-G. Chen, Sci. Bull. 60, 1157 (2015).

20. A. Shapira, L. Naor, and A. Arie, Sci. Bull. 60, 1403 (2015).

21. R. Cao, B. Gai, J. Yang, T. Liu, J. Liu, S. Hu, J. Guo, Y. Tan, S. He, W. Liu, H. Cai, and X. Zhang, Chin. Opt. Lett. 13, 121903 (2015).

22. Y. Lu, X. Zhang, and Z. Yao, Chin. Opt. Lett. 5, 353 (2007).

23. Y. Yu, G. Jin, C. Wang, X. Chen, J. Guo, and Y. Wang, Chin. Opt. Lett. 34, 1024 (2009).

24. Y. Lv, H. Tan, and L. Qian, Chin. Opt. Lett. 4, 25 (2006).

25. X. Chen, X. Li, H. Zhang, H. Chen, J. Bai, and Z. Ren, Chin. Opt. Lett. 7, 815 (2009).

26. Y. Shang, M. Shen, P. Wang, X. Li, and X. Xu, Chin. Opt. Lett. 14, 121901 (2016).

27. T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F.-L. Hong, and T. W. H?nsch, Opt. Express 17, 17792 (2009).

28. J. Wang, J.-Q. Sun, C.-H. Luo, and Q.-Z. Sun, Opt. Express, 13, 7405 (2005).

29. L.-N. Zhao, J. Su, X.-P. Hu, X.-J. Lv, Z.-D. Xie, G. Zhao, P. Xu, and S.-N. Zhu, Opt. Express 18, 13331 (2010).

30. E. D. Black, Am. J. Phys. 69, 79 (2001).

31. V. Pasiskevicius, G. Str?mqvist, F. Laurell, and C. Canaliase, Opt. Mater. 34, 513 (2012).

32. R. W. Boyd, Nonlinear Optics , 2nd ed. (Academic, 2003).

33. B. Albrecht, P. Farrera, X. Fernandez-Gonzalvo, M. Cristiani, and H. de Riedmatten, Nat. Commun. 5, 3376 (2014).

Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387