2019-01-16 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 12 , Vol. 15 , 2017    10.3788/COL201715.121901

Conical sum-frequency generation in a bulk anomalous-like dispersion medium
Wanxu Zhao1;2, Xiaohui Zhao1;2, Yuanlin Zheng1;2, Huaijin Ren3, and Xianfeng Chen1;2
1 State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Physics and Astronomy, [Shanghai Jiao Tong University], Shanghai 200240, China
2 Key Laboratory for Laser Plasmas (Ministry of Education), Collaborative Innovation Center of IFSA (CICIFSA),[ Shanghai Jiao Tong University], Shanghai 2 002 40, China
3 [Institute of Applied Electronics], China Academy of Engineering Physics, Mianyang 621900, China

Chin. Opt. Lett., 2017, 15(12): pp.121901

Topic:Nonlinear optics
Keywords(OCIS Code): 190.0190  190.5890  140.3613  

We observe conical sum-frequency generation in a bulk anomalous-like dispersion medium, which is attributed to complete phase-matching of one fundamental wave and the scattering wave of the other fundamental wave. In addition, efficient sum-frequency output is achieved making use of total internal reflection with conversion efficiency of 7.9% by only one reflection. The experiment proposes a new phase-matching mode under an anomalous-like dispersion condition, which suggests potential applications in efficient frequency conversion.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (603 KB)


Posted online:2017/11/22

Get Citation: Wanxu Zhao, Xiaohui Zhao, Yuanlin Zheng, Huaijin Ren, and Xianfeng Chen, "Conical sum-frequency generation in a bulk anomalous-like dispersion medium," Chin. Opt. Lett. 15(12), 121901(2017)

Note: This work was supported in part by the National Natural Science Foundation of China (Nos. 61235009, 61505189, and 11604206) and the Presidential Foundation of the China Academy of Engineering Physics (No. 201501023).


1. H. Ren, X. Deng, Y. Zheng, N. An, and X. Chen, Appl. Phys. Lett. 103, 021110 (2013).

2. N. An, Y. Zheng, H. Ren, X. Deng, and X. Chen, Appl. Phys. Lett. 102, 201112 (2013).

3. W. Hasi, H. Zhao, D. Lin, W. He, and Z. Lü, Chin. Opt. Lett. 13, 061901 (2015).

4. J. Armstrong, N. Bloembergen, J. Ducuing, and P. Pershan, Phys. Rev. 127, 1918 (1962).

5. Z. Xie, G. Zhao, P. Xu, Z. Gao, and S. Zhu, J. Appl. Phys. 101, 056104 (2007).

6. P. Xu, S. Ji, S. Zhu, X. Yu, J. Sun, H. Wang, J. He, Y. Zhu, and N. Ming, Phys. Rev. Lett. 93, 133904 (2004).

7. H. Huang, C. P. Huang, C. Zhang, D. Zhu, X. H. Hong, J. Lu, J. Jiang, Q. J. Wang, and Y. Y. Zhu, Appl. Phys. Lett. 100, 022905 (2012).

8. N. An, Y. Zheng, H. Ren, X. Zhao, X. Deng, and X. Chen, Photon. Res. 3, 106 (2015).

9. H. Zeng, J. Wu, H. Xu, K. Wu, and E. Wu, Phys. Rev. Lett. 92, 143903 (2004).

10. H. Zeng, J. Wu, H. Xu, K. Wu, and E. Wu, Phys. Rev. Lett. 96, 83902 (2006).

11. G. Wu, W. Li, E. Wu, and H. Zeng, Opt. Express 18, 1000 (2010).

12. R. Cao, B. Gai, J. Yang, T. Liu, J. Liu, S. Hu, J. Guo, Y. Tan, S. He, W. Liu, H. Cai, and X. Zhang, Chin. Opt. Lett. 13, 121903 (2015).

13. J. Warner, Quantum Electronics (Academic, 1975).

14. M. M. Abbas, T. Kostiuk, and K. W. Ogilvie, Appl. Optics 15, 961 (1976).

15. R. W. Boyd, and C. H. Townes, Appl. Phys. Lett. 31, 440 (1977).

16. T. R. Gurski, Appl. Phys. Lett. 23, 273 (1973).

17. H. Y. Shen, W. X. Lin, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z. D. Zeng, W. J. Zhang, R. F. Wu, and Q. J. Ye, Appl. Phys. 72, 4472 (1992).

18. J. Giordmaine, Phys. Rev. Lett. 8, 19 (1962).

19. Y. Chen, K. Su, T. Lu, and K. Huang, Phys. Rev. Lett. 96, 033905 (2006).

20. K. Bastw?ste, U. Sander, and M. Imlau, J. Phys.: Condens. Matter. 19, 156225 (2007).

21. Y. Ja, J. Opt. 21, 41 (1990).

Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备15018463号-7 公安备案沪公网安备 31011402005522号