2017-12-15 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 12 , Vol. 15 , 2017    10.3788/COL201715.121601

Bismuth-doped germanate glass fiber fabricated by the rod-in-tube technique
Ziyang Zhang, Jiangkun Cao, Jiayu Zheng, Mingying Peng, Shanhui Xu, and Zhongmin Yang
The State Key Laboratory of Luminescent Materials and Devices, and Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, [South China University of Technology], Guangzhou 510641, China

Chin. Opt. Lett., 2017, 15(12): pp.121601

Keywords(OCIS Code): 160.3380  160.2750  160.2290  

Bismuth (Bi)-doped laser glasses and fiber devices have aroused wide attentions due to their unique potential to work in the new spectral range of 1 to 1.8 μm traditional laser ions, such as rare earth, cannot reach. Current Bi-doped silica glass fibers have to be made by modified chemical vapor deposition at a temperature higher than 2000°C. This unavoidably leads to the tremendous loss of Bi by evaporation, since the temperature is several hundred degrees Celsius higher than the Bi boiling temperature, and, therefore, trace Bi (~50 ppm) resides within the final product of silica fiber. So, the gain of such fiber is usually extremely low. One of the solutions is to make the fibers at a temperature much lower than the boiling temperature of Bi. The challenge for this is to find a lower melting point glass, which can stabilize Bi in the near infrared emission center and, meanwhile, does not lose glass transparency during fiber fabrication. None of previously reported Bi-doped multicomponent glasses can meet the prerequisite. Here, we, after hundreds of trials on optimization over glass components, activator content, melting temperature, etc., find a novel Bi-doped gallogermanate glass, which shows good tolerance to thermal impact and can accommodate a higher content of Bi. Consequently, we successfully manufacture the germanate fiber by a rod-in-tube technique at 850°C. The fiber exhibits similar luminescence to the bulk glass, and it shows saturated absorption at 808 nm rather than 980 nm as the incident power becomes higher than 4 W. Amplified spontaneous emissions are observed upon the pumps of either 980 or 1064 nm from germanate fiber.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (845 KB)


Posted online:2017/11/7

Get Citation: Ziyang Zhang, Jiangkun Cao, Jiayu Zheng, Mingying Peng, Shanhui Xu, and Zhongmin Yang, "Bismuth-doped germanate glass fiber fabricated by the rod-in-tube technique," Chin. Opt. Lett. 15(12), 121601(2017)

Note: This work was supported by the National Key Research and Development Plan (No. 2017YFF0104504), the National Natural Science Foundation of China (Nos. 51672085 and 51322208), the Program for Innovative Research Team in University of Ministry of Education of China (No. IRT_17R38), the Key Program of Guangzhou Scientific Research Special Project (No. 201607020009), and the Fundamental Research Funds for the Central Universities.


1. K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, Fusion Eng. Des. 44, 437 (1999).

2. M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, Opt. Lett. 29, 1998 (2004).

3. M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, Opt. Lett. 30, 2433 (2005).

4. E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Gur’yanov, Quantum Electron. 35, 1083 (2005).

5. J. Han, L. Li, M. Peng, B. Huang, F. Pan, F. Kang, L. Li, J. Wang, and B. Lei, Chem. Mater. 29, 8412 (2017).

6. Y. Zhao, L. Wondraczek, A. Mermet, M. Peng, Q. Zhang, and J. Qiu, Opt. Express 23, 12423 (2015).

7. M. Peng, C. Zollfrank, and L. Wondraczek, J. Phys. Cond. Matter. 21, 285106 (2009).

8. L. Su, H. Zhao, H. Li, L. Zheng, G. Ren, J. Xu, W. Ryba-Romanowski, R. Lisiecki, and P. Solarz, Opt. Lett. 36, 4551 (2011).

9. I. Razdobreev, and L. Bigot, Opt. Mater. 33, 973 (2011).

10. M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, J. Non-Cryst. Solids 357, 2241 (2011).

11. Z. Song, C. Li, Y. Li, Z. Yang, D. Zhou, Z. Yin, X. Wang, Q. Wang, T. Hau, Z. Zhao, Y. Yang, X. Yu, and J. Qiu, Opt. Mater. 35, 61 (2012).

12. F. Kang, M. Peng, D. Lei, and Q. Zhang, Chem. Mater. 28, 7807 (2016).

13. X. Guo, H. Li, L. Su, P. Yu, H. Zhao, Q. Wang, J. Liu, and J. Xu, Opt. Mater. 34, 675 (2012).

14. R. Cao, M. Peng, L. Wondraczek, and J. Qiu, Opt. Express 20, 2562 (2012).

15. Q. C. Sheng, Q. L. Zhou, and D. P. Chen, J. Mater. Chem. C 1, 3067 (2013).

16. F. Kang, H. Zhang, L. Wondraczek, X. Yang, Y. Zhang, D. Lei, and M. Peng, Chem. Mater. 28, 2692 (2016).

17. M. Hughes, R. Gwilliam, K. Homewood, B. Gholipour, D. Hewak, T. Lee, S. Elliott, T. Suzuki, Y. Ohishi, T. Kohoutek, and R. Curry, Opt. Express 21, 8101 (2013).

18. I. Bufetov, M. Melkumov, S. Firstov, K. Riumkin, A. Shubin, V. Khopin, A. Guryanov, and E. Dianov, IEEE J. Sel. Top. Quantum Electron. 20, 111 (2014).

19. M. Peng, Q. Zhao, J. Qiu, and L. Wondraczek, J. Am. Ceram. Soc. 92, 542 (2009).

20. L. Wang, L. Tan, Y. Yue, M. Peng, and J. Qiu, J. Am. Ceram. Soc. 99, 2071 (2016).

21. S. Xu, Z. Yang, T. Liu, W. Zhang, Z. Feng, Q. Zhang, and Z. Jiang, Opt. Express 18, 1249 (2010).

22. M. Ding, S. Wei, Y. Luo, and G. Peng, Opt. Lett. 41, 4688 (2016).

23. H. Yu, X. Wang, P. Zhou, H. Xiao, and J. Chen, Chin. Opt. Lett. 12, S20604 (2014).

24. W. Li, D. Chen, Q. Zhou, and L. Hu, Chin. Opt. Lett. 14, 011402 (2016).

25. J. Liu, L. Ge, L. Feng, H. Jiang, H. Su, T. Zhou, J. Wang, Q. Gao, and J. Li, Chin. Opt. Lett. 14, 051404 (2016).

26. Y. Zhao, Z. Wang, H. Yu, X. Xu, J. Xu, and X. Xu, Chin. Opt. Lett. 13, 021404 (2015).

27. R. Zhang, H. Lin, Y. Yu, D. Chen, J. Xu, and Y. Wang, Laser Photon. Rev. 8, 158 (2014).

Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387