2017-12-15 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 12 , Vol. 15 , 2017    10.3788/COL201715.121401


Faraday laser at Rb 1529 nm transition for optical communication systems
Pengyuan Chang, Tiantian Shi, Shengnan Zhang, Haosen Shang, Duo Pan, and Jingbiao Chen
State Key Laboratory of Advanced Optical Communication System and Network, School of Electronics Engineering and Computer Science, [Peking University], Beijing 100871, China

Chin. Opt. Lett., 2017, 15(12): pp.121401

DOI:10.3788/COL201715.121401
Topic:Lasers and laser optics
Keywords(OCIS Code): 140.0140  140.2020  140.3425  230.2240  

Abstract
We experimentally demonstrate a Faraday laser at Rb 1529 nm transition by using a performance-improved Rb electrodeless-discharge-lamp-based excited-state Faraday anomalous dispersion optical filter as the frequency-selective element. Neither the electrical locking scheme nor the additional frequency-stabilized pump laser are used. The frequency of the external-cavity diode laser is stabilized to the Rb 1529 nm transition, and the Allan deviation of the Faraday laser is measured by converting the optical intensity into frequency. The Faraday laser can be used as a frequency standard in the telecom C band for further research on metrology, microwave photonics, and optical communication systems.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (1900 KB)

Share:


Received:2017/9/8
Accepted:2017/9/22
Posted online:2017/11/2

Get Citation: Pengyuan Chang, Tiantian Shi, Shengnan Zhang, Haosen Shang, Duo Pan, and Jingbiao Chen, "Faraday laser at Rb 1529 nm transition for optical communication systems," Chin. Opt. Lett. 15(12), 121401(2017)

Note: This work was supported by the National Natural Science Foundation of China under Grant No. 91436210.



References

1. E. C. Cook, P. J. Martin, T. L. Brown-Heft, J. C. Garman, and D. A. Steck, Rev. Sci. Instrum. 83, 043101 (2012).

2. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B. 31, 97 (1983).

3. C. E. Wieman, and L. Hollberg, Rev. Sci. Instrum. 62, 1 (1991).

4. Y. Li, Y. G. Lin, Q. Wang, S. K. Wang, Y. Zhao, F. Meng, B. K. Lin, J. P. Cao, T. C. Li, and Z. J. Fang, Chin. Phys. Lett. 31, 66 (2014).

5. I. Coddington, W. C. Swann, L. Lorini, J. C. Bergquist, Y. L. Coq, C. W. Oates, Q. Quraishi, K. S. Feder, J. W. Nicholson, and P. S. Westbrook, Nat. Photon. 1, 283 (2007).

6. E. Ip, A. P. Lau, D. J. Barros, and J. M. Kahn, Opt. Express 16, 753 (2008).

7. H. R. Noh, and H. S. Moon, Phys. Rev. A. 80, 2554 (2009).

8. M. D. E. Yn, A. S. Palacios, S. Coop, T. Vanderbruggen, K. T. Kaczmarek, and M. W. Mitchell, Opt. Lett. 40, 4731 (2015).

9. H. S. Moon, W. K. Lee, L. Lee, and J. B. Kim, Appl. Phys. Lett. 85, 3965 (2004).

10. J. Wang, H. F. Liu, G. Yang, B. D. Yang, and J. M. Wang, Phys. Rev. A. 90, 052505 (2014).

11. F. L. Hong, Meas. Sci. Technol. 28, 012002 (2017).

12. G. C. Bjorklund, Opt. Lett. 5, 15 (1980).

13. T. W. Hansch, and B. Couillaud, Opt. Commun. 35, 441 (1980).

14. R. K. Raj, D. Bloch, J. J. Snyder, G. Camy, and M. Ducloy, Opt. Commun. 44, 1251 (1980).

15. W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, Nat. Commun. 6, 7371 (2015).

16. Q. Q. Sun, W. Zhuang, Z. W. Liu, and J. B. Chen, Opt. Lett. 36, 4611 (2011).

17. Q. Q. Sun, Y. L. Hong, W. Zhuang, Z. W. Liu, and J. B. Chen, Appl. Phys. Lett. 101, 211102 (2012).

18. Y. Ohman, Stock. Obs. Ann. 19, 9 (1956).

19. D. J. Dick, and T. M. Shay, Opt. Lett. 16, 867 (1991).

20. X. Xue, D. Pan, X. G. Zhang, B. Luo, J. B. Chen, and H. Guo, Photon. Res. 3, 275 (2015).

21. J. Menders, K. Benson, S. H. Bloom, C. S. Liu, and E. Korevaar, Opt. Lett. 16, 846 (1991).

22. X. H. Lu, X. M. Chen, L. Zhang, and D. J. Xue, Chin. Phys. Lett. 20, 2155 (2003).

23. S. Xu, Z. Yang, G. Wang, S. Dai, L. Hu, and Z. Jiang, Chin. Opt. Lett. 1, 544 (2003).

24. J. X. Tang, Q. J. Wang, Y. M. Li, L. Zhang, J. H. Gan, M. H. Duan, J. K. Kong, and L. M. Zheng, Appl. Opt. 34, 2619 (1995).

25. A. Popescu, K. Schorstein, and T. Walther, Appl. Phys. B. 79, 955 (2004).

26. A. Popescu, and T. Walther, Appl. Phys. B. 98, 667 (2010).

27. Z. M. Tao, Y. L. Hong, B. Luo, J. B. Chen, and H. Guo, Opt. Lett. 40, 4348 (2015).

28. X. Y. Miao, L. F. Yin, W. Zhuang, B. Luo, A. H. Dang, J. B. Chen, and H. Guo, Rev. Sci. Instrum. 82, 086106 (2011).

29. Z. M. Tao, X. G. Zhang, D. Pan, M. Chen, C. W. Zhu, and J. B. Chen, J. Phys. B At. Mol. Opt. Phys. 49, 13LT01 (2016).

30. J. Keaveney, W. J. Hamlyn, C. S. Adams, and I. G. Hughes, Rev. Sci. Instrum. 87, 095111 (2016).

31. L. Ling, and G. Bi, Opt. Lett. 39, 3324 (2014).

32. D. Pan, X. B. Xue, H. S. Shang, B. Luo, J. B. Chen, and H. Guo, Sci. Rep. 6, 29882 (2016).

33. W. Zhuang, Y. Hong, Z. Gao, C. Zhu, and J. Chen, Chin. Opt. Lett. 12, 101204 (2014).

34. P. Chang, H. Peng, S. Zhang, Z. Chen, B. Luo, J. Chen, and H. Guo, Sci. Rep. 7, 8995 (2017).

35. M. Chen, “Research on rubidium two photon Faraday optical filter,” Master Dissertation (Peking University, 2015).

36. Y. F. Wang, S. N. Zhang, D. Y. Wang, Z. M. Tao, Y. L. Hong, and J. B. Chen, Opt. Lett. 37, 4059 (2012).

37. L. Zhang, and J. X. Tang, Opt. Commun. 152, 275 (1998).

38. Z. Tao, Y. Wang, S. Zhang, D. Wang, Y. Hong, W. Zhuang, and J. Chen, Chin. Opt. Lett. 11, 100202 (2013).


Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387