2017-12-15 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 12 , Vol. 15 , 2017    10.3788/COL201715.120602

Real-time measurement of nano-particle size using differential optical phase detection
Qing Li1, He Huang1, Feng Lin2, and Xingkun Wu1
1 State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, [Zhejiang University], Hangzhou, Zhejiang 31 0027, China
2 School of Computer Engineering, [Nanyang Technological University], 637553, Singapore

Chin. Opt. Lett., 2017, 15(12): pp.120602

Topic:Fiber optics and optical communication
Keywords(OCIS Code): 060.2370  290.5850  060.5060  

We demonstrate a size sensing technique for nano-particles using optical differential phase measurement by a dual fiber interferometer through phase-generated carrier (PGC) demodulation. Nano-particle diameters are obtained from the differential phase shift as a result of adding an optical scattering perturbation into two-beam interference. Polystyrene nano-particles with diameters from 200 to 900 nm in a microfluidic channel are detected using this technique to acquire real-time particle diameters. Compared with amplitude sensing with over 10 mW of laser irradiance, particle sizing by PGC phase sensing can be achieved at a laser power as low as 1.18 mW. We further analyze major sources of noise in order to improve the limits of detection. This sensing technique may find a broad range of applications from the real-time selection of biological cell samples to rare cell detection in blood samples for early cancer screening.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (485 KB)


Posted online:2017/11/6

Get Citation: Qing Li, He Huang, Feng Lin, and Xingkun Wu, "Real-time measurement of nano-particle size using differential optical phase detection," Chin. Opt. Lett. 15(12), 120602(2017)

Note: This work was supported in part by the National Natural Science Foundation of China (NSFC) under Grant No. 61378086.


1. C. Sophonsiri, and E. Morgenroth, Chemosphere 55, 691 (2004).

2. A. Chavez, B. Jimenez, and C. Maya, Water Sci. Technol. 50, 179 (2004).

3. G. Eshel, G. J. Levy, U. Mingelgrin, and M. J. Singer, Soil Sci. Soc. AM. J. 68, 736 (2004).

4. M. I. Cotterell, B. J. Mason, T. C. Preston, A. J. Orr-Ewing, and J. P. Reid, Phys. Chem. Chem. Phys. 17, 15843 (2015).

5. R. E. H. Miles, A. E. Carruthers, and J. P. Reid, Laser Photon. Rev. 5, 534 (2011).

6. F. Gu, Y. Liu, J. Zhang, Y. Chen, and F. Cui, Chin. Opt. Lett. 14, 112901 (2016).

7. Y. Deng, Q. Lu, and Q. Luo, Chin. Opt. Lett. 4, 45 (2006).

8. C. Krafft, S. Dochow, I. Latka, B. Dietzek, and J. Popp, Biomed. Spectros. Imaging 1, 39 (2012).

9. M. Vendrell, K. K. Maiti, K. Dhaliwal, and Y. T. Chang, Trends Biotechnol. 31, 249 (2013).

10. B. Sciacca, A. Fran?ois, P. Hoffmann, and T. M. Monro, Sensor Actuat. B-Chem. 183, 454 (2013).

11. M. S. Luchansky, and R. C. Bailey, Anal. Chem. 82, 1975 (2010).

12. K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, Biophys. J. 77, 2856 (1999).

13. U. Mirsaidov, J. Scrimgeour, W. Timp, K. Beck, M. Mir, P. Matsudaira, and G. Timp, Lab. Chip. 8, 2174 (2008).

14. I. A. Vorobjev, H. Liang, W. H. Wright, and M. W. Berns, Biophys. J. 64, 533 (1993).

15. F. Ignatovich, D. Topham, and L. Novotny, IEEE J. Sel. Top. Quantum Electron. 12, 1292 (2006).

16. T. Lehre, H. Bockhorn, B. Jungfleisch, and R. Suntz, Chemosphere 51, 1055 (2003).

17. T. Lehre, B. Jungfleisch, R. Suntz, and H. Bockhorn, Appl. Opt. 42, 2021 (2003).

18. A. Leiria, and F. Bastiao, Appl. Opt. 43, 3726 (2004).

19. C. Zakian, M. Dickinson, and T. King, J. Opt. A: Pure Appl. Opt. 7, S445 (2005).

20. M. S. Luchansky, and R. C. Bailey, Anal. Chem. 82, 1975 (2010).

21. J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, Nat. Photon. 4, 122 (2009).

22. M. Canpolat, and J. R. Mourant, Appl. Opt. 40, 3792 (2001).

23. R. Xu, and O. A. D. Guida, Powder Technol. 132, 145 (2003).

24. H. Huang, Q. Li, J. Fu, J. Wu, F. Lin, and X. Wu, Nanoscale 7, 16504 (2015).

25. Q. Li, H. Huang, F. Lin, and X. Wu, Opt. Express 24, 11458 (2016).

Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387