Electron vortices in photoionization by a pair of elliptically polarized attosecond pulses
Meng Li1;2,
Guizhong Zhang1,
Tianqi Zhao1,
Xin Ding1,
and Jianquan Yao1
1 College of Precision Instrument and Optoelectronics Engineering, [Tianjin University], Tianjin 300072, China
2 Civil Aviation Meteorological Institute, Key Laboratory of Operation Programming &
Safety Technology of Air Traffic Management, Civil Aviation University of China, Tianjin 300300, China
Chin. Opt. Lett.,
2017,
15(12):
pp.120202
DOI:10.3788/COL201715.120202Topic:Atomic and molecular physics
Keywords(OCIS Code):
020.2649 020.0020 260.3230
Abstract
The photoionization by two elliptically polarized, time delayed attosecond pulses is investigated to display a momentum distribution having the helical vortex or ring structures. The results are obtained by the strong field approximation method and analyzed by the pulse decomposition. The ellipticities and time delay of the two attosecond pulses are found to determine the rotational symmetry and the number of vortex arms. For observing these vortex patterns, the energy bandwidth and temporal duration of the attosecond pulses are ideal.
Copyright: © 2003-2012 . This is an open-access article distributed under the terms
of the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original author and source are credited.
View
PDF (483 KB)
Received:2017/9/12
Accepted:2017/11/1
Posted online:2017/11/16
Get Citation:
Meng Li, Guizhong Zhang, Tianqi Zhao, Xin Ding, and Jianquan Yao, "Electron vortices in photoionization by a pair of elliptically polarized attosecond pulses," Chin. Opt. Lett.
15(12),
120202(2017)
Note:
This work was supported by the National Natural Science Foundation of China (Nos. 11674243 and 11674242)and the Fundamental Research Funds for the Central Universities (No. 3122016D029).
References
1. M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, Nature 414, 509 (2001).
2. E. Goulielmakis, V. S. Yakovlev, A. L. Cavalieri, M. Uiberacker, V. Pervak, A. Apolonski, R. Kienberger, U. Kleineberg, and F. Krausz, Science 317, 769 (2007).
3. H. Du, L. Luo, X. Wang, and B. Hu, Opt. Express 20, 9713 (2012).
4. Q. Wang, Y. Zhang, Z. Wang, J. Ding, Z. Liu, and B. Hu, Chin. Opt. Lett. 14, 110201 (2016).
5. M.-H. Xu, L.-Y. Peng, Z. Zhang, Q. Gong, and X.-M. Tong, Phys. Rev. Lett. 107, 183001 (2011).
6. M. Li, J.-W. Geng, M.-M. Liu, X. Zheng, L.-Y. Peng, Q. Gong, and Y. Liu, Phys. Rev. A 92, 013416 (2015).
7. J.-W. Geng, W.-H. Xiong, X.-R. Xiao, L.-Y. Peng, and Q. Gong, Phys. Rev. Lett. 115, 193001 (2015).
8. L. Y. Peng, E. A. Pronin, and A. F. Starace, New J. Phys. 10, 025030 (2008).
9. P.-L. He, C. Ruiz, and F. He, Phys. Rev. Lett. 116, 203601 (2016).
10. S.-S. Wei, S.-Y. Li, F.-M. Guo, and Y.-J. Yang, Phys. Rev. A 87, 063418 (2013).
11. C. Figueira de Morisson Faria, H. Schomerus, X. Liu, and W. Becker, Phys. Rev. A 69, 043405 (2004).
12. L.-Y. Peng, and A. F. Starace, Phys. Rev. A 76, 043401 (2007).
13. N. Douguet, A. N. Grum-Grzhimailo, E. V. Gryzlova, E. I. Staroselskaya, J. Venzke, and K. Bartschat, Phys. Rev. A 93, 033402 (2016).
14. S. X. Hu, Phys. Rev. Lett. 111, 123003 (2013).
15. A. N. Grum-Grzhimailo, A. D. Kondorskiy, and K. Bartschat, J. Phys. B: At. Mol. Opt. Phys. 39, 4659 (2006).
16. N. F. Ramsey, Phys. Rev. 78, 695 (1950).
17. M. N. Djiokap, S. X. Hu, L. B. Madsen, N. L. Manakov, A. V. Meremianin, and A. F. Starace, Phys. Rev. Lett. 115, 113004 (2015).
18. M. Harris, C. A. Hill, and J. M. Vaughan, Opt. Commun. 106, 161 (1994).
19. K. Zhai, Z. Li, H. Xie, C. Jing, G. Li, B. Zeng, W. Chu, J. Ni, J. Yao, and Y. Cheng, Chin. Opt. Lett. 13, 050201 (2015).
20. Y. Xie, Y. Yang, L. Han, Q. Yue, and C. Guo, Chin. Opt. Lett. 14, 122601 (2016).
21. I. Bialynicki-Birula, Z. Bialynicka-Birula, and C. Sliwa, Phys. Rev. A61, 032110 (2000).
22. S. J. Ward, and J. H. Macek, Phys. Rev. A 90, 062709 (2014).
23. J. H. Macek, J. B. Sternberg, S. Y. Ovchinnikov, and J. S. Briggs, Phys. Rev. Lett. 104, 033201 (2010).
24. J. M. Feagin, J. Phys. B 44, 011001 (2011).
25. D. Pengel, S. Kerbstadt, D. Johannmeyer, L. Englert, T. Bayer, and M. Wollenhaupt, Phys. Rev. Lett. 118, 053003 (2017).
26. K. Y. Bliokh, Y. P. Bliokh, S. Savel’ev, and F. Nori, Phys. Rev. Lett.1 99, 190404 (2007).
27. J. M. Ngoko Djiokap, A. V. Meremianin, N. L. Manakov, S. X. Hu, L. B. Madsen, and A. F. Starace, Phys. Rev. A 94, 013408 (2016).
28. K.-J. Yuan, S. Chelkowski, and A. D. Bandrauk, Phy. Rev. A 93, 053425 (2016).
29. K. Zhai, Z. Li, H. Xie, C. Jing, G. Li, B. Zeng, W. Chu, J. Ni, J. Yao, and Y. Cheng, Chin. Opt. Lett. 13, 050201 (2015).
30. Y. Xie, Y. Yang, L. Han, Q. Yue, and C. Guo, Chin. Opt. Lett. 14, 122601 (2016).
31. P. L. He, N. Takemoto, and F. He, Phys. Rev. A 91, 063413 (2015).
32. O. Kfir, P. Grychtol, E. Turgut, R. Knut, D. Zusin, D. Popmintchev, T. Popmintchev, H. Nembach, J. M. Shaw, A. Fleischer, H. Kapteyn, M. Murnane, and O. Cohen, Nat. Photon. 9, 99 (2014).