2018-01-18 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 11 , Vol. 15 , 2017    10.3788/COL201715.112801

Photonics-based real-time and high-resolution ISAR imaging of non-cooperative target
Fangzheng Zhang, Qingshui Guo, Ying Zhang, Yao Yao, Pei Zhou, Daiyin Zhu, and Shilong Pan
Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, [Nanjing University of Aeronautics and Astronautics], Nanjing 210016, China

Chin. Opt. Lett., 2017, 15(11): pp.112801

Topic:Remote sensing and sensors
Keywords(OCIS Code): 280.6730  060.5625  

Real-time and high-resolution imaging is demonstrated based on field trial detection of a non-cooperative target using a photonics-based inverse synthetic aperture radar (ISAR). By photonic generation and de-chirping of broadband linear frequency modulation signals, the radar can achieve a high range resolution thanks to the large instantaneous bandwidth (8 GHz at the K band), as well as real-time ISAR imaging using low-speed analog-to-digital conversion (25 MSa/s). A small-size unmanned aerial vehicle is employed as the non-cooperative target, and ISAR imaging is realized with a resolution far better than those achieved by the previously reported photonics-based ISARs. The capability for real-time ISAR imaging is also verified with an imaging frame rate of 25 fps. These results validate that the photonics-based radar is feasible in practical real-time and high-resolution ISAR imaging applications.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (466 KB)


Posted online:2017/10/19

Get Citation: Fangzheng Zhang, Qingshui Guo, Ying Zhang, Yao Yao, Pei Zhou, Daiyin Zhu, and Shilong Pan, "Photonics-based real-time and high-resolution ISAR imaging of non-cooperative target," Chin. Opt. Lett. 15(11), 112801(2017)

Note: This work was supported in part by the National Natural Science Foundation of China (Nos. 61401201 and 61422108), the Aviation Science Foundation of China (No. 2015ZC52024), and the Open Fund of Science and Technology on Monolithic Integrated Circuits and Modules Laboratory (No. 20150C1404).


1. V. C. Chen, and M. Martorella, Inverse Synthetic Aperture Radar Imaging: Principles, Algorithms and Applications (SciTech Publishing, 2014).

2. P. Almorox-Gonzalez, J. T. González-Partida, M. Burgos-García, C. D. L. Morena-Alvarez-Palencia, L. Arche-Andradas, and B. P. Dorta-Naranjo, in Proceedings of 2007 International Conference Sensor Technologies Applications (2007).

3. B. Valdes, Y. Alvarze, S. Mantzavinos, F. Las-Heras, and J. A. Martinez-Lorenzo, IEEE Antennas Propag. Mag. 58, 35 (2016).

4. J. Ping, A. Ling, T. Quan, and C. Dat, in IEEE Proceedings of Conference on Sustainable Utilization and Development in Engineering and Technology (2012), p.?289.

5. D. A. Robertson, D. G. Macfarlane, R. I. Hunter, C. L. Cassidy, N. Liombart, E. Candini, T. Bryllert, M. Ferndahl, H. Lindstrom, J. Tenhunen, H. Vasama, J. Huopana, T. Selkala, and A. J. Vuotikka, Proc. SPIE 10189, 101890C (2017).

6. Q. Li, D. Yang, X. H. Mu, and Q. L. Huo, in International Conference on Microwave and Millimeter Wave Technology (ICMMT) (2012).

7. Q. Yang, B. Deng, H. Wang, and Y. Qing, Electron. Lett. 52, 2059 (2016).

8. B. B. Cheng, G. Jing, C. Wang, C. Yang, Y. W. Cai, Q. Chen, X. Huang, G. H. Zeng, J. Jiang, X. J. Deng, and J. Zhang, IEEE Trans. THz Sci. Technol. 3, 606 (2013).

9. J. Capmany, and D. Novak, Nat. Photon. 1, 319 (2007).

10. J. Yao, IEEE J. Lightwave Technol. 27, 314 (2009).

11. W. Zhai, X. Gao, W. Xu, M. Zhao, M. Xie, S. Huang, and W. Gu, Chin. Opt. Lett. 14, 040601 (2016).

12. X. Ye, B. Zhang, Y. Zhang, D. Zhu, and S. Pan, Chin. Opt. Lett. 15, 010013 (2017).

13. P. Zhou, F. Zhang, Q. Guo, and S. Pan, Opt. Express 24, 18460 (2016).

14. H. Zhang, W. Zou, and J. Chen, Opt. Lett. 40, 1085 (2015).

15. E. H. W. Chan, and R. A. Minasian, J. Lightwave Technol. 30, 3580 (2012).

16. Z. Z. Tang, and S. L. Pan, IEEE Trans. Microwave Theory Tech. 64, 3017 (2016).

17. P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, Nature 507, 341 (2014).

18. F. Zhang, Q. Guo, Z. Wang, P. Zhou, G. Zhang, J. Sun, and S. Pan, Opt. Express 25, 16274 (2017).

19. J. Zheng, T. Su, L. Zhang, W. Zhu, and Q. H. Liu, IEEE Trans. Geosci. Remote Sens. 52, 7276 (2014).

20. J. Zheng, T. Su, W. Zhu, and Q. H. Liu, IEEE Trans. Geosci. Remote Sens. 11, 1275 (2014).

21. C. Lin, P. Shih, J. Chen, W. Xue, P. Peng, and S. Chi, IEEE Photon. Technol. Lett. 20, 1027 (2008).

22. Q. Guo, F. Zhang, P. Zhou, and S. L. Pan, IEEE Photon. Technol. Lett. 29, 1320 (2017).

23. F. Laghezza, F. Scotti, D. Onori, and A. Bogoni, in The 17th International Radar Symposium (IRS) (2016).

24. R. Li, W. Li, M. Ding, Z. Wen, Y. Li, L. Zhou, S. Yu, T. Xing, B. Gao, Y. Luan, Y. Zhu, P. Guo, Y. Tian, and X. Liang, Opt. Express 25, 14334 (2017).

Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387