2018-01-18 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 11 , Vol. 15 , 2017    10.3788/COL201715.111601

H-plane cross-shaped waveguide circulator in magneto-photonic crystals with five ferrite posts
Yong Wang1, Dengguo Zhang2, Shixiang Xu2, Biaogang Xu2, and Zheng Dong2
1 College of Optoelectronic Engineering, [Shenzhen University], Shenzhen 51 8060, China
2 College of Electronic Science and Technology, [Shenzhen University], Shenzhen 518060, China

Chin. Opt. Lett., 2017, 15(11): pp.111601

Keywords(OCIS Code): 160.5293  230.5298  130.5296  160.3820  

A novel H-plane cross-shaped circulator based on magneto-photonic crystals is experimentally investigated. The band gap of the TE mode for the photonic crystals is calculated by the plane wave expansion method. The transmission characteristics of the circulator are simulated by the finite element method. We perform the experiments in the microwave regime to validate the numerical results. At the central frequency of 10.15 GHz, the measured isolation and insertion loss of the circulator reaches ?30.2 and ?3.93 dB, respectively. The bandwidth of the circulator is about 550 MHz. The optimal experimental value of isolation is higher than the numerical value.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (688 KB)


Posted online:2017/10/19

Get Citation: Yong Wang, Dengguo Zhang, Shixiang Xu, Biaogang Xu, and Zheng Dong, "H-plane cross-shaped waveguide circulator in magneto-photonic crystals with five ferrite posts," Chin. Opt. Lett. 15(11), 111601(2017)

Note: This work was supported by the National Natural Science Foundation of China under Grant No. 61171006.


1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).

2. S. John, Phys. Rev. Lett. 58, 2486 (1987).

3. Y. Akahane, T. Asano, B. S. Song, and S. Noda, Nature 425, 944 (2003).

4. D. R. Solli, C. F. McCormick, R. Y. Chiao, and J. M. Hickmann, Appl. Phys. Lett. 82, 1036 (2003).

5. X. Hui, and C. Yu, Photon. Res. 5, 11 (2017).

6. K. X. Chen, K. S. Chiang, and H. P. Chan, IEEE Photon. Tech. Lett. 20, 273 (2008).

7. T. D. Happ, A. Markard, and M. Kamp, Electron. Lett. 37, 428 (2001).

8. Z. H. Zhu, W. M. Ye, J. R. Ji, X. D. Yuan, and C. Zen, Opt. Express 14, 1783 (2006).

9. M. Lin, X. Xi, W. B. Qiu, Y. X. Ai, Q. Wang, Q. Liu, and Z. B. Ouyang, Opt. Express 24, 23917 (2016).

10. X. Xu, Z. Zhang, Z. Zhang, J. Jin, and N. Song, Chin. Opt. Lett. 13, 030601 (2015).

11. S. Vyas, T. Tanabe, M. Tiwari, and G. Singh, Chin. Opt. Lett. 14, 123201 (2016).

12. S. Duan, Y. Chen, G. Li, C. Zhu, and X. Chen, Chin. Opt. Lett. 14, 042301 (2016).

13. V. Dmitriev, M. N. Kawakatsu, and F. J. D. Souza, Opt. Lett. 37, 3192 (2012).

14. Z. Wang, and S. H. Fan, Opt. Lett. 30, 1989 (2005).

15. A. A. Jalali, and A. F. Friberg, Opt. Lett. 30, 1213 (2005).

16. Y. Wang, D. Zhang, S. Xu, B. Xu, Z. Dong, and T. Huang, Chin. Opt. Lett. 15, 062301 (2017).

17. Y. Wang, D. G. Zhang, S. X. Xu, B. G. Xu, Z. Dong, and T. Huang, Microwave Opt. Tech. Lett. 59, 1347 (2017).

18. E. K. N. Yung, D. G. Zhang, and R. S. K. Wong, IEEE Trans. Microwave Theory Tech. 44, 454 (1996).

19. F. Fan, S. J. Chang, C. Niu, Y. Hou, and X. H. Wang, Opt. Commun. 285, 3763 (2012).

20. V. Dmitriev, G. Portela, and L. Martins, Photon. Network Commun. 33, 1 (2017).

21. B. Owen, Bell System Tech. J. 51, 595 (1972).

22. D. G. Zhang, J. Chin. Institute Commun. 8, 56 (1987).

Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387