2019-02-19 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 11 , Vol. 15 , 2017    10.3788/COL201715.111402

Mid-infrared Er:ZBLAN fiber laser reaching 3.68 μm wavelength
Zhipeng Qin, Guoqiang Xie, Jingui Ma, Peng Yuan, and Liejia Qian
Key Laboratory for Laser Plasmas (Ministry of Education), Collaborative Innovation Center of IFSA (CICIFSA), School of Physics and Astronomy, [Shanghai Jiao Tong University], Shanghai 200240, China

Chin. Opt. Lett., 2017, 15(11): pp.111402

Topic:Lasers and laser optics
Keywords(OCIS Code): 140.3070  060.2390  060.3510  140.3480  

We report a continuous-wave Er:ZBLAN fiber laser with the operation wavelength reaching 3.68 μm. The mid-infrared Er:ZBLAN fiber laser is pumped with the dual-wavelength sources consisting of a commercial laser diode at 970 nm and a homemade Tm-doped fiber laser at 1973 nm. By increasing the launched pump power at 1973 nm, the laser wavelength can be switched from 3.52 to 3.68 μm. The maximum output power of 0.85 W is obtained with a slope efficiency of 25.14% with respect to the 1973 nm pump power. In the experiment, the laser emission at 3.68 μm is obtained with a significant power of 0.62 W, which is the longest emission wavelength in free-running Er:ZBLAN fiber lasers.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (567 KB)


Posted online:2017/9/22

Get Citation: Zhipeng Qin, Guoqiang Xie, Jingui Ma, Peng Yuan, and Liejia Qian, "Mid-infrared Er:ZBLAN fiber laser reaching 3.68 μm wavelength," Chin. Opt. Lett. 15(11), 111402(2017)

Note: This work was partially supported by the National Basic Research Program of China (No. 2013CBA01505), the Shanghai Excellent Academic Leader Project (No. 15XD1502100), the National Natural Science Foundation of China (No. 61675130), and the National Postdoctoral Program for Innovative Talents (No. 190375).


1. B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. H?fler, and J. Faist, Appl. Phys. Lett. 91, 231101 (2007).

2. H. H. P. Th. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and H. M. A. Schleijpen, Proc. SPIE 5615, 27 (2004).

3. D. Halmer, S. Thelen, P. Hering, and M. Mürtz, Appl. Phys. B 85, 437 (2006).

4. J. J. Scherer, J. B. Paul, H. J. Jost, and M. L. Fischer, Appl. Phys. B 110, 271 (2013).

5. Y. Shang, M. Shen, P. Wang, X. Li, and X. Xu, Chin. Opt. Lett. 14, 121901 (2016).

6. M. Razeghi, N. Bandyopadhyay, Y. Bai, Q. Lu, and S. Slivken, Opt. Mater. Express 3, 1872 (2013).

7. C. Yang, Y. Ju, B. Yao, Z. Zhang, T. Dai, and X. Duan, Chin. Opt. Lett. 14, 061403 (2016).

8. V. Fortin, M. Bernier, S. T. Bah, and R. Vallée, Opt. Lett. 40, 2882 (2015).

9. Y. O. Aydin, V. Fortin, F. Maes, F. Jobin, S. D. Jackson, R. Vallée, and M. Bernier, Optica 4, 235 (2017).

10. S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, Opt. Lett. 36, 2812 (2011).

11. Z. Qin, G. Xie, H. Zhang, C. Zhao, P. Yuan, S. Wen, and L. Qian, Opt. Express 23, 24713 (2015).

12. C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, Laser Phys. Lett. 13, 105108 (2016).

13. P. Tang, Z. Qin, J. Liu, C. Zhao, G. Xie, S. Wen, and L. Qian, Opt. Lett. 40, 4855 (2015).

14. Z. Qin, G. Xie, G. Zhao, S. Wen, P. Yuan, and L. Qian, Opt. Lett. 41, 56 (2016).

15. S. Duval, M. Bernier, V. Fortin, J. Genest, M. Piché, and R. Vallée, Optica 2, 623 (2015).

16. S. Antipov, D. D. Hudson, A. Fuerbach, and S. D. Jackson, Optica 3, 1373 (2016).

17. H. T?bben, Frequenz 45, 250 (1991).

18. H. T?bben, Electron. Lett. 28, 1361 (1992).

19. O. Hendeson-Sapir, D. Ottaway, and J. Munch, in Frontiers in Optics (Optical Society of America, 2013), paper?FW4B.1.

20. O. Henderson-Sapir, J. Munch, and D. J. Ottaway, Opt. Lett. 39, 493 (2014).

21. F. Maes, V. Fortin, M. Bernier, and R. Vallée, Opt. Lett. 42, 2054 (2017).

22. Y. D. Huang, M. Mortier, and F. Auzel, Opt. Mater. 17, 501 (2001).

23. O. Henderson-Sapir, A. Malouf, N. Bawden, J. Munch, S. D. Jackson, and D. J. Ottaway, IEEE J. Sel. Top. Quantum Electron. 23, 0900509 (2017).

24. O. Henderson-Sapir, S. D. Jackson, and D. J. Ottaway, Opt. Lett. 41, 1676 (2016).

25. F. Maes, V. Fortin, M. Bernier, and R. Vallée, IEEE J. Quantum Electron. 53, 1600208 (2017).

26. H. Okamoto, K. Kasuga, and Y. Kubota, Opt. Lett. 36, 1470 (2011).

Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备15018463号-7 公安备案沪公网安备 31011402005522号