2018-01-18 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 11 , Vol. 15 , 2017    10.3788/COL201715.111401

Population inversion in sodium D2 transition based on sodium-ethane excimer pairs
Shu Hu1, Baodong Gai1;2, Jingwei Guo1, Pengyuan Wang1, Xueyang Li1;2, Hui Li1, Jinbo Liu1, Shan He1;2, Xianglong Cai1, Dong Liu1, Ying Chen1, Fengting Sang1, and Yuqi Jin1
1 Key Laboratory of Chemical Lasers, [Dalian Institute of Chemical Physics], Chinese Academy of Sciences, Dalian 1 1 6023, China
2 [University of Chinese Academy of Sciences], Beijing 100049, China

Chin. Opt. Lett., 2017, 15(11): pp.111401

Topic:Lasers and laser optics
Keywords(OCIS Code): 140.1340  140.2180  020.0020  

Sodium-ethane excimer pairs are studied and proved to be a great choice of excimer pumped sodium laser (XPNaL) gain media. The lifetime of the sodium D2 line is studied in a sodium-ethane excimer system excited by a 553 nm laser, and the observed phenomenon of lifetime lengthening is discussed. Amplified spontaneous emission (ASE) of the sodium D2 line is successfully obtained, and its time-resolved and spectroscopic characteristics are studied experimentally. According to the intensity of the ASE signal under different sodium vapor atom densities, the sodium D2 line gain feature of sodium-ethane excimer pairs excited by the 553 nm laser is concluded.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (424 KB)


Posted online:2017/8/21

Get Citation: Shu Hu, Baodong Gai, Jingwei Guo, Pengyuan Wang, Xueyang Li, Hui Li, Jinbo Liu, Shan He, Xianglong Cai, Dong Liu, Ying Chen, Fengting Sang, and Yuqi Jin, "Population inversion in sodium D2 transition based on sodium-ethane excimer pairs," Chin. Opt. Lett. 15(11), 111401(2017)

Note: This work was supported by the National Natural Science Foundation of China under Grant Nos. 61505210 and 11475177.


1. W. F. Krupke, Prog. Quantum Electron. 36, 4 (2012).

2. R. H. Page, R. J. Beach, and V. K. Kanz, Opt. Lett. 31, 353 (2006).

3. B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, Opt. Commun. 354, 256 (2015).

4. J. Zweiback, and W. F. Krupke, Opt. Express 18, 1444 (2010).

5. B. V. Zhdanov, G. Venus, V. Smirnov, L. Glebov, and R. J. Knize, Rev. Sci. Instrum. 86, 083104 (2015).

6. J. D. Readle, Atomatic Alkali Lasers Pumped by the Dissociation of Photoexcited Alkali-rare Gas Collision Pairs (University of Illinois, 2010).

7. A. D. Palla, D. L. Carroll, J. T. Verdeyen, and M. C. Heaven, J. Phys. B: At. Mol. Opt. Phys. 44, 135402 (2011).

8. J. D. Readle, J. T. Verdeyen, J. G. Eden, S. J. Davis, K. L. Galbally-Kinney, W. T. Rawlins, and W. J. Kessler, Opt. Lett. 34, 3638 (2009).

9. J. D. Hewitt, T. J. Houlahan Jr, J. E. Gallagher, D. L. Carroll, A. D. Palla, J. T. Verdeyen, G. P. Perram, and J. G. Eden, Appl. Phys. Lett. 102, 111104 (2013).

10. D. Yue, W. Li, H. Wang, Z. Yang, and X. Xu, Proc. SPIE 8551, 855102 (2012).

11. R. Cao, B. Gai, J. Yang, T. Liu, J. Liu, S. Hu, J. Guo, Y. Tan, S. He, W. Liu, H. Cai, and X. Zhang, Chin. Opt. Lett. 13, 121903 (2015).

12. W. Liu, L. Dong, P. Yang, and B. Xu, Chin. Opt. Lett. 14, 020101 (2016).

13. B. Dong, and R. Wang, Chin. Opt. Lett. 14, 031406 (2016).

14. R. A. Humphreys, L. C. Bradley, and J. Herrmann, Lincoln Lab. J. 5, 45 (1992).

15. C. E. Max, S. S. Olivier, H. W. Friedman, J. An, K. Avicola, B. V. Beeman, H. D. Bissinger, J. M. Brase, G. V. Erbert, D. T. Gavel, K. Kanz, M. C. Liu, B. Macintosh, K. P. Neeb, J. Patience, and K. E. Waltjen, Science 277, 1649 (1997).

16. P. Wang, S. Xie, Y. Bo, B. Wang, J. Zuo, Z. Wang, Y. Shen, F. Zhang, K. Wei, K. Jin, Y. Xu, J. Xu, Q. Peng, J. Zhang, W. Lei, D. Cui, Y. Zhang, and Z. Xu, Chin. Phys. B 23, 094208 (2014).

17. Z. Wang, B. Zhang, J. Ning, X. Zhang, X. Su, and R. Zhao, Chin. Opt. Lett. 13, 021403 (2015).

18. Z. H. Cong, X. Y. Zhang, Q. P. Wang, X. H. Chen, S. Z. Fan, Z. J. Liu, H. J. Zhang, X. T. Tao, J. Y. Wang, H. Y. Zhao, and S. T. Li, Laser Phys. Lett. 7, 862 (2010).

19. M. Duering, V. Kolev, and B. Luther-Davies, Opt. Express 17, 437 (2009).

20. J. D. Hewitt, and J. G. Eden, Appl. Phys. Lett. 101, 241109 (2012).

21. S. Hu, B. Gai, Z. Cao, J. Guo, and F. Wang, Acta Phys. Chim. Sin. 32, 848 (2016).

22. U. Volz, M. Majerus, H. Liebel, A. Schmitt, and H. Schmoranzer, Phys. Rev. Lett. 76, 2862 (1996).

23. G. Gautam, C. G. Parigger, D. M. Surmick, and A. M. El Sherbini, J. Quantum Spectrosc. Radiat. Transfer 170, 189 (2016).

24. C. G. Parigger, D. M. Surmick, G. Gautam, and A. M. El Sherbini, Opt. Lett. 40, 3436 (2015).

25. W. P. Garver, M. R. Pierce, and J. J. Leventhal, J. Chem. Phys. 77, 1201 (1982).

26. B. P. Kibble, G. Copley, and L. Krause, Phys. Rev. 153, 9 (1967).

27. K. C. Brown, and G. O. Perram, Phys. Rev. A 85, 022713 (2012).

28. N. D. Zameroski, G. D. Hager, W. Rudolph, and D. A. Hostutler, J. Opt. Soc. Am. B 28, 1088 (2011).

29. N. D. Zameroski, W. Rudolph, G. D. Hager, and D. A. Hostutler, J. Phys. B: At. Mol. Opt. Phys. 42, 245401 (2009).

30. V. N. Azyazov, S. M. Bresler, A. P. Torbin, A. M. Mebel, and M. C. Heaven, Opt. Lett. 41, 669 (2016).

31. W. Huang, R. Tan, Z. Li, and X. Lu, Opt. Express, 23, 31698 (2015).

32. C. B. Alcock, V. P. Itkin, and M. K. Horrigan, Can. Metall. Quart. 23, 309 (1984).

Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387