2018-01-18 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 11 , Vol. 15 , 2017    10.3788/COL201715.111202

Normalized point source sensitivity analysis in GSSM prototype
Qichang An1;2, Jingxu Zhang1, Fei Yang1, and Hongchao Zhao1
1 [Changchun Institute of Optics, Fine Mechanics and Physics], Chinese Academy of Sciences, Changchun 1 30033, China
2 [Graduate University of Chinese Academy of Sciences], Beijing 100039, China

Chin. Opt. Lett., 2017, 15(11): pp.111202

Topic:Instrumentation, measurement and metrology
Keywords(OCIS Code): 120.4640  120.4610  120.4800  120.5050  

The Giant Steerable Science Mirror (GSSM) is the tertiary mirror of the Thirty Meter Telescope (TMT). To evaluate the performance of GSSM, normalized point source sensitivity (PSSn) is investigated. Calibration and metrology allow the estimation of telescope performance at different zenith angles. PSSn also realizes the prediction of the TMT main mirror assembly optical performance. The relationship between PSSn and slope root mean square (RMS) is analyzed theoretically when evaluating the performance of GSSM. First and foremost, the pointing performance of the GSSM prototype (GSSMP) is specified by PSSn and calibrated by a laser tracker. Then, the tracking performance influence on PSSn is taken into consideration. The jitter of the GSSMP also contributes to the degradation of PSSn, and it is also discussed. Lastly, the interaction between GSSM and the main mirror unit is also revealed by PSSn.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (444 KB)


Posted online:2017/9/14

Get Citation: Qichang An, Jingxu Zhang, Fei Yang, and Hongchao Zhao, "Normalized point source sensitivity analysis in GSSM prototype," Chin. Opt. Lett. 15(11), 111202(2017)

Note: This work was supported by the Youth Innovation Promotion Association CAS (No. 2016198) and the National Natural Science Foundation of China (Nos. 11403022 and 11673080).


1. L. Stepp, Proc. SPIE 8444, 84441G (2012).

2. M. K. Cho, “Performance prediction of the TMT tertiary mirror, Ritchey–Chrétien design,” TMT.OPT.TEC.07.026.REL01 (2007).

3. G. Z. Angeli, S. Roberts, and K. Vogiatzis, Proc. SPIE 7017, 701704 (2008).

4. B. J. Seo, C. Nissly, G. Angeli, B. Ellerbroek, J. Nelson, N. Sigrist, and M. Troy, Proc. SPIE 7017, 70170T (2008).

5. G. Z. Angeli, B. J. Seo, C. Nissly, and M. Troy, Proc. SPIE 8127, 812709 (2011).

6. F. Yang, G. Liu, Q. An, and X. Zhang, Chin. Opt. Lett. 13, 041201 (2015).

7. D. G. MacMartin, P. M. Thompson, M. M. Colavita, and M. J. Sirota, IEEE Trans. Control Syst. Tech. 22, 58 (2014).

8. Y. Bao, X. Yi, Z. Li, Q. Chen, J. Li, X. Fan, and X. Zhang, Light Sci. Appl. 4, e300 (2015).

9. S. Poupar, P. Haguenauer, J. Alonso, N. Schuhler, J. P. Henriquez, and J. P. Berger, Proc. SPIE 9145, 91452M (2014).

10. D. Wulich, and N. S. Kopeika, Opt. Eng. 26, 266529 (1987).

Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387