2018-01-18 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 11 , Vol. 15 , 2017    10.3788/COL201715.111201

Encoding method of CGH for highly accurate optical measurement based on non-maxima suppression
Xisheng Xiao1;2;3, Qinghua Yu1;2, Zhentao Zhu1;2;3, Kai Hu1;2, and Guilin Chen1;2
1 [Shanghai Institute of Technical Physics of the Chinese Academy of Sciences], Shanghai 200083, China
2 [Key Laboratory of Infrared System Detection and Imaging technology], Chinese Academy of Sciences, Shanghai 2 00083, China
3 [University of Chinese Academy of Sciences], Beijing 100049, China

Chin. Opt. Lett., 2017, 15(11): pp.111201

Topic:Instrumentation, measurement and metrology
Keywords(OCIS Code): 120.2880  050.1970  090.1760  

The use of a computer-generated hologram (CGH) in interferometric testing provides new methods for highly accurate optical measurement. To fabricate a CGH, polygons are used to approximate the smooth CGH pattern. Because the data size supported by CGH writing machines is limited, the number of polygon vertices must be limited. Therefore, the CGH-encoding method determines the encoding accuracy. To realize a highly accurate optical measurement using CGHs, we propose a CGH-pattern-encoding method based on non-maxima suppression. A self-aligned CGH is designed to verify the accuracy. The experimental result shows that a highly accurate CGH can be fabricated using this method.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (525 KB)


Posted online:2017/8/28

Get Citation: Xisheng Xiao, Qinghua Yu, Zhentao Zhu, Kai Hu, and Guilin Chen, "Encoding method of CGH for highly accurate optical measurement based on non-maxima suppression," Chin. Opt. Lett. 15(11), 111201(2017)

Note: This work was supported by the Foundation of Youth Innovation Promotion Association, Chinese Academy of Sciences (No. 20150192) and the Foundation of Innovation Program, Shanghai Institute of Technical Physics of the Chinese Academy of Sciences (No. CX-65).


1. T. Yang, J. Zhu, and G. Jin, Chin. Opt. Lett. 14, 060801 (2016).

2. F. Zhang, Chin. Opt. Lett. 13, S12202 (2015).

3. J. H. Burge, L. B. Kot, H. M. Martin, R. Zehnder, and C. Zhao, Proc. SPIE 6273, 62730M (2006).

4. H. Shen, R. Zhu, Z. Gao, E. Y. B. Pun, W. H. Wong, and X. Zhu, Chin. Opt. Lett. 11, 032201 (2013).

5. Z. Cui, Nanofabrication Technologies and Applications (Higher Education, 2005).

6. C. Zhao, and J. H. Burge, in Conference on Lasers and Electro-Optics/Pacific Rim (2009), paper?ThJ2_3.

7. I. Kallioniemi, J. Saarinen, K. Blomstedt, and J. Turunen, Appl. Opt. 36, 7217 (1997).

8. J. Fan, D. Zaleta, K. S. Urquhart, and S. H. Lee, Appl. Opt. 34, 2522 (1995).

9. J. Ma, Z. Gao, R. Zhu, Y. He, L. Chen, J. Li, E. Y. B. Pun, W. H. Wong, L. Huang, C. Xie, X. Zhu, and J. Ma, Chin. Opt. Lett. 7, 70 (2009).

10. W. H. Lee, Appl. Opt. 13, 1677 (1974).

11. W. Cai, P. Zhou, C. Zhao, and J. H. Burge, Appl. Opt. 52, 8324 (2013).

12. P. Zhou, and J. H. Burge, Opt. Express 15, 15410 (2007).

13. C. H. Teh, and R. T. Chin, IEEE Trans. Pattern Anal. Mach. Intell. 11, 859 (1989).

Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387