2018-12-19 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 11 , Vol. 15 , 2017    10.3788/COL201715.110605


Theoretical study of stimulated Raman scattering in long tapered fiber amplifier
Chen Shi1, Xiaolin Wang1;2;3, Pu Zhou1;2;3, and Xiaojun Xu1;2;3
1 College of Optoelectronic Science and Engineering, [National University of Defense Technology], Changsha 41 0073, China
2 [Hunan Provincial Key Laboratory of High Energy Laser Technology], Changsha 410073, China
3 [Hunan Provincial Collaborative Innovation Center of High Power Fiber Laser], Changsha 410073 , China

Chin. Opt. Lett., 2017, 15(11): pp.110605

DOI:10.3788/COL201715.110605
Topic:Fiber optics and optical communication
Keywords(OCIS Code): 060.2320  060.4370  290.5910  

Abstract
A model that is based on the propagation equation and coupled mode theory is introduced in order to describe stimulated Raman scattering (SRS) effects in long tapered fiber amplifiers. Based on the presented model, fiber amplifiers with uniform and long tapered fibers are theoretically and numerically simulated. It can be drawn from the results of our simulations that the long tapered fiber has the advantage in suppressing SRS when applied in fiber laser amplifiers. Our results can provide guidance in the designing of system configuration in long tapered-fiber-based fiber laser systems.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (1169 KB)

Share:


Received:2017/6/27
Accepted:2017/9/22
Posted online:2017/10/16

Get Citation: Chen Shi, Xiaolin Wang, Pu Zhou, and Xiaojun Xu, "Theoretical study of stimulated Raman scattering in long tapered fiber amplifier," Chin. Opt. Lett. 15(11), 110605(2017)

Note: This work was supported by the National Natural Science Foundation of China (No. 61505260) and the National Key Research and Development Program of China (No. 2016YFB0402204).



References

1. M. N. Zervas, and C. A. Codemard, IEEE J Sel. Top. Quantum Electron. 20, 219 (2014).

2. C. Jauregui, J. Limpert, and A. Tunnermann, Nat. Photon. 7, 861 (2013).

3. D. J. Richardson, J. Nilsson, and W. A. Clarkson, J. Opt. Soc. Am. B, 27, B63 (2010).

4. Z. Wang, Q. Li, Z. Wang, F. Zou, Y. Bai, S. Feng, and J. Zhou, Chin. Opt. Lett. 14, 081401 (2016).

5. Y. Shang, M. Shen, P. Wang, X. Li, and X. Xu, Chin. Opt. Lett. 14, 121901 (2016).

6. M. Hu, W. Ke, Y. Yang, M. Lei, K. Liu, X. Chen, C. Zhao, Y. Qi, B. He, X. Wang, and J. Zhou, Chin. Opt. Lett. 14, 011901 (2016).

7. V. Filippov, J. Kerttula, and O. G. Okhotnikov, Tapered Fiber Lasers and Amplifiers (Wiley-VCH Verlag GmbH & Co. KGaA, 2012), p.?177.

8. V. Filippov, Y. Chamorovskii, J. Kerttula, A. Kholodkov, and O. G. Okhotnikov, Opt. Lett. 33, 1416 (2008).

9. V. Filippov, Y. Chamorovskii, J. Kerttula, K. Golant, M. Pessa, and O. G. Okhotnikov, Opt. Express 16, 1929 (2008).

10. V. Filippov, Y. Chamorovskii, J. Kerttula, A. Kholodkov, and O. G. Okhotnikov, Opt. Express 17, 1203 (2009).

11. V. Filippov, J. Kerttula, Y. Chamorovskii, K. Golant, and O. G. Okhotnikov, Opt. Express 18, 12499 (2010).

12. J. Kerttula, V. Filippov, Y. Chamorovskii, K. Golant, and O. G. Okhotnikov, Opt. Express 18, 18543 (2010).

13. V. Filippov, Y. K. Chamorovskii, K. M. Golant, A. Vorotynskii, and O. G. Okhotnikov, Proc. SPIE 9728, 97280V (2015).

14. J. Kerttula, V. Filippov, V. Ustimchik, Y. Chamorovskiy, and O. G. Okhotnikov, Opt. Express 20, 25461 (2012).

15. C. Shi, X. Wang, P. Zhou, X. Xu, and Q. Lu, Opt. Express 24, 19473 (2016).

16. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. Barty, Opt. Express 16, 13240 (2008).

17. G. Agrawal, Nonlinear Fiber Optics (Springer, 2006).


Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备15018463号-7 公安备案沪公网安备 31011402005522号