2019-01-22 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 11 , Vol. 15 , 2017    10.3788/COL201715.110501

Application of metal nanoparticles/porous silicon diffraction grating in rhodamine 6 G fluorescence signal enhancement
Jiajia Wang1, Zhenhong Jia2, Changwu Lv3, and Yanyu Li3
1 College of Chemistry and Chemical Engineering, [Xinjiang University], Urumqi 830046, China
2 College of Information Science and Engineering, [Xinjiang University], Urumqi 830046, China
3 College of Physical Science and Technology, [Xinjiang University], Urumqi 83 0046, China

Chin. Opt. Lett., 2017, 15(11): pp.110501

Topic:Diffraction and gratings
Keywords(OCIS Code): 050.0050  230.0230  300.6280  

We present a technique for fabricating a fluorescence enhancement device composed of metal nanoparticles (NPs) and porous silicon (PSi) diffraction grating. The fluorescence emission enhancement properties of the PSi and the fluorescence enhancement of the probe molecules are studied on PSi gratings. The fluorescence enhancement of the probe molecules on a fluorescence enhancement device is further improved through the deposition of metal NPs onto the PSi grating. In comparison to metal NP/PSi devices, metal NP periodic distributions can produce a stronger fluorescence enhancement that couples with the PSi grating fluorescence enhancement to achieve an overall three-fold enhancement of the fluorescence intensity.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (538 KB)


Posted online:2017/8/15

Get Citation: Jiajia Wang, Zhenhong Jia, Changwu Lv, and Yanyu Li, "Application of metal nanoparticles/porous silicon diffraction grating in rhodamine 6 G fluorescence signal enhancement," Chin. Opt. Lett. 15(11), 110501(2017)

Note: This work was supported by the National Natural Science Foundation of China under Grant Nos. 61575168 and 61665012.


1. K. Sokolov, G. Chamanov, and T. M. Cotton, Anal. Chem. 70, 3898 (1998).

2. K. Aslan, I. Gryczynski, and J. Malicka, Curr. Opin. Biotechnol. 16, 55 (2005).

3. S. Ekgasit, F. Yu, and W. Knoll, Sens. Actuators B. 104, 294 (2005).

4. Y. Chen, and Z. Li, Chin. Opt. Lett. 13, 020501 (2015).

5. C. D. Geddes, “Angular-dependent metal-enhanced fluorescence,” US Patent No. 8980179 (2007).

6. M. Pelton, J. Aizpurua, and G. Bryant, Laser Photon. Rev. 2, 136 (2008).

7. T. K. Sau, A. L. Rogach, J. Frank, T. A. Klar, and J. Feldmann, Adv. Mater. 22, 1805 (2010).

8. J. Kottmann, O. Martin, D. Smith, and S. Schultz, Opt. Express. 6, 213 (2000).

9. P. Pavaskar, I. K. Hsu, J. Theiss, and W. H. Hung, J. Appl. Phys. 113, 034302 (2013).

10. Sudheer, P. Tiwari, S. Bhartiya, C. Mukherjee, M. N. Singh, and A. K. Sinha, J. Appl. Phys. 118, 064303 (2015).

11. B. Yan, A. Thubagere, W. R. Premasiri, L. D. Ziegler, L. D. Negro, and B. M. Reinhard, ACS Nano 3, 1190 (2009).

12. M. Kahraman, P. Daggumati, O. Kurtulus, E. Seker, and S. Wachsmannhogiu, Sci. Rep. 3, 3396 (2013).

13. M. Geissler, K. Li, B. Cui, L. Clime, and T. Veres, J. Phys. Chem. C 113, 17296 (2009).

14. A. Kocabas, G. Ertas, S. S. Senlik, and A. Aydinli, Opt. Express 16, 12469 (2008).

15. Y. Li, H. Chen, S. Kroker, T. K?sebier, Z. Liu, K. Qiu, Y. Liu, E.-B. Kley, X. Xu, Y. Hong, and S. Fu, Chin. Opt. Lett. 14, 090501 (2016).

16. M. G. Banaee, ACS Nano 5, 307 (2010).

17. Y. Jiao, D. S. Koktysh, N. Phambu, and S. M. Weiss, Appl. Phys. Lett. 97, 153125 (2010).

18. M. B. D. L. Mora, J. Bornacelli, R. Nava, R. Zanella, and J. A. Reyes-Esqueda, J. Lumin. 146, 247 (2014).

19. F. Shi, Z. Jia, X. Lv, and J. Zhou, Phys. Status Solidi A 212, 662 (2014).

20. L. He, Z. Jia, and J. Zhou, Chin. Opt. Lett. 14, 041601 (2016).

Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备15018463号-7 公安备案沪公网安备 31011402005522号