2018-01-18 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 11 , Vol. 15 , 2017    10.3788/COL201715.110201

Characterizing carrier envelope phase of an isolated attosecond pulse with annular photoionization momentum spectra
Meng Li1;2, Guizhong Zhang1, Tianqi Zhao1, Xin Ding1, and Jian Yao1
1 College of Precision Instrument and Optoelectronics Engineering, [Tianjin University], Tianjin 300072, China
2 Civil Aviation Meteorological Institute, Key Laboratory of Operation Programming and Safety Technology of Air Traffic Management, [Civil Aviation University of China], Tianjin 300300, China

Chin. Opt. Lett., 2017, 15(11): pp.110201

Topic:Atomic and molecular physics
Keywords(OCIS Code): 020.2649  020.1335  

The carrier envelope phase (CEP) has a direct impact on the physical properties of an isolated attosecond pulse (IAP) and many strong field processes, but it is difficult to measure in reality. Aiming at obtaining more accurate and complete characterization of CEP, we numerically investigate the annular photoelectron momentum spectra of the hydrogen atom ionized by overlapped fields of an IAP and an infrared (IR) pulse. By defining an overlapping parameter, the momentum patterns are classified and optimized for unambiguously measuring the rotation angle of a momentum pattern versus the CEP value. A series of simulations verify its robustness.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (1248 KB)


Posted online:2017/9/8

Get Citation: Meng Li, Guizhong Zhang, Tianqi Zhao, Xin Ding, and Jian Yao, "Characterizing carrier envelope phase of an isolated attosecond pulse with annular photoionization momentum spectra," Chin. Opt. Lett. 15(11), 110201(2017)

Note: This work was supported by the National Natural Science Foundation of China (Nos. 11674243 and 11674242) and the Fundamental Research Funds for the Central Universities (No. 3122016D029).


1. M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, Nature 414, 509 (2001).

2. A. Baltu?ka, T. Udem, M. Uiberacker, and M. Hentschel, Nature 421, 611 (2003).

3. E. Goulielmakis, V. S. Yakovlev, A. L. Cavalieri, M. Uiberacker, V. Pervak, A. Apolonski, R. Kienberger, U. Kleineberg, and F. Krausz, Science 317, 769 (2007).

4. H. Du, L. Luo, X. Wang, and B. Hu, Opt. Express 20, 9713 (2012).

5. Q. Wang, Y. Zhang, Z. Wang, J. Ding, Z. Liu, and B. Hu, Chin. Opt. Lett. 14, 110201 (2016).

6. J. Itatani, F. Quéré, G. Yudin, and M. Ivanov, Phys. Rev. Lett. 88, 173903 (2002).

7. M. Kitzler, N. Milosevic, A. Scrinzi, F. Krausz, and T. Brabec, Phys. Rev. Lett. 88, 173904 (2002).

8. M. F. Kling, Ch. Siedschlag, and A. J. Verhoef, Science 312, 246 (2006).

9. P. M. Paul, E. S. Toma, and P. Breger, Science 292, 1689 (2001).

10. D. J. Jones, S. A. Diddams, and J. K. Rankaetal, Science 288, 635 (2000).

11. M. Kakehata, H. Takada, Y. Kobayashi, K. Torizuka, Y. Fujihira, T. Homma, and H. Takahashi, Opt. Lett. 26, 1436 (2001).

12. C. Grebing, S. Koke, B. Manschwetus, and G. Steinmeyer, Appl. Phys. B 95, 81 (2009).

13. E. Goulielmakis, V. S. Yakovlev, A. L. Cavalieri, M. Uiberacker, V. Pervak, A. Apolonski, R. Kienberger, U. Kleineberg, and F. Krausz, Science 317, 769 (2007).

14. X. Chen, L. Canova, A. Malvache, A. Jullien, R. Lopez-Martens, C. Durfee, D. Papadopoulos, and F. Druon, Appl. Phys. B 99, 149 (2010).

15. R. Kienberger, E. Goulielmakis, M. Uiberacker, A. Baltuska, V. Yakovlev, F. Bammer, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, Nature 427, 817 (2004).

16. M. Wen, L. L. Jin, H. Y. Wang, Z. Wang, Y. R. Lu, J. E. Chen, and X. Q. Yan, Phys. Rev. E 85, 035401 (2012).

17. Q. Li, H. Chen, X. Zhang, and X. Yi, Chin. Phys. B 23, 074206 (2014).

18. G. G. Paulus, F. Lindner, H. Walther, A. Baltuska, E. Goulielmakis, M. Lezius, and F. Krausz, Phys. Rev. Lett. 91, 253004 (2003).

19. T. Wittmann, B. Horvath, W. Helml, M. G. Sch?tzel, X. Gu, A. L. Cavalieri, G. G. Paulus, and R. Kienberger, Nat. Phys. 5, 357 (2009).

20. S. Micheau, Zh. Chen, and T. Morishita, J. Phys. B 42, 065402 (2009).

21. T. Rathje, N. G. Johnson, M. M?ller, F. Sü?mann, D. Adolph, M. Kübel, R. Kienberger, M. F. Kling, G. G. Paulus, and A. M. Sayler, J. Phys. At. Mol. Opt. Phys. 45, 074003 (2012).

22. V. V. Strelkov, E. Mevel, and E. Constant, Opt. Express 22, 6239 (2014).

23. M. Miranda, Th. Fordell, C. Arnold, A. L’Huillier, and H. Crespo, Opt. Express 20, 688 (2012).

24. Y. Xiang, J. Lu, Y. Niu, and S. Gong, J. Phys. B 48, 135601 (2015).

25. G. Sansone, and F. Kelkensberg, Nature 465, 763 (2010).

26. L. Y. Peng, E. A. Pronin, and A. F. Starace, New J. Phys. 10, 025030 (2008).

27. C. D. Liu, M. Reduzzi, A. Trabattoni, and A. Sunilkumar, Phys. Rev. Lett. 111, 123901 (2013).

28. P.-L. He, C. Ruiz, and F. He, Phys. Rev. Lett. 116, 203601 (2016).

29. A. Mancuso, D. Hickstein, and M. Dorney, Phys. Rev. A 93, 053406 (2016).

30. A. Mancuso, M. Dorney, and D. Hickstein, Phys. Rev. Lett. 117, 133201 (2016).

31. J. Wu, M. Magrakvelidze, L. P. H. Schmidt, M. Kunitski, T. Pfeifer, M. Sch?ffler, M. Pitzer, M. Richter, S. Voss, H. Sann, H. Kim, J. Lower, T. Jahnke, A. Czasch, U. Thumm, and R. Dorner, Nat. Commun. 4, 2177 (2013).

32. A. N. Pfeiffer, C. Cirelli, M. Smolarski, R. D?rner, and U. Keller, Nat. Phys. 7, 428 (2011).

33. M. Ivanovand, and O. Smirnova, Phys. Rev. Lett. 107, 213605 (2011).

34. M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, Nature 419, 803 (2002).

35. M. Uiberacker, Th. Uphues, M. Schultze, A. J. Verhoef, V. Yakovlev, M. F. Kling, J. Rauschenberger, N. M. Kabachnik, H. Schr?der, M. Lezius, K. L. Kompa, H.-G. Muller, M. J. J. Vrakking, S. Hendel, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, Nature 446, 627 (2007).

36. M. Schultze, M. Fie?, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgd?rfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, Science 328, 1658 (2010).

37. K. Zhai, Z. Li, H. Xie, C. Jing, G. Li, B. Zeng, W. Chu, J. Ni, J. Yao, and Y. Cheng, Chin. Opt. Lett. 13, 050201 (2015).

38. Y. Xie, Y. Yang, L. Han, Q. Yue, and C. Guo, Chin. Opt. Lett. 14, 122601 (2016).

39. P. L. He, N. Takemoto, and F. He, Phys. Rev. A 91, 063413 (2015).

40. W. T. Rhodes, in Strong Field Laser Physics (Springer, 2008), p.?162.

Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387