2017-12-15 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 10 , Vol. 15 , 2017    10.3788/COL201715.101201


Large-range displacement measurement using sinusoidal phase-modulating laser diode interferometer
Ming Zhang1;2, Chang Ni1;2, Yu Zhu1;2, Leijie Wang1;2, Chuxiong Hu1;2, and Jinchun Hu1;2
1 State Key Laboratory of Tribology, Department of Mechanical Engineering, [Tsinghua University], Beijing 1 00084, China
2 Beijing Laboratory of Precision/Ultra-Precision Manufacture Equipment and Control, [Tsinghua University], Beijing 100084, China

Chin. Opt. Lett., 2017, 15(10): pp.101201

DOI:10.3788/COL201715.101201
Topic:Instrumentation, measurement and metrology
Keywords(OCIS Code): 120.3180  070.6020  350.2460  

Abstract
A signal processing method of realizing a large-range displacement measurement in a sinusoidal phase-modulating laser diode interferometer is proposed. The method of obtaining the dynamic value of the effective sinusoidal phase-modulating depth is detailed, and the residual amplitude modulation is also taken into account. Numerical simulations and experiments are carried out to compare this method with the traditional one. We prove that, with this method, the sinusoidal phase-modulating laser diode interferometer can realize a centimeter-level displacement measurement range with high precision, which is much better than the traditional method.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (854 KB)

Share:


Received:2017/4/23
Accepted:2017/6/16
Posted online:2017/7/11

Get Citation: Ming Zhang, Chang Ni, Yu Zhu, Leijie Wang, Chuxiong Hu, and Jinchun Hu, "Large-range displacement measurement using sinusoidal phase-modulating laser diode interferometer," Chin. Opt. Lett. 15(10), 101201(2017)

Note: This work was supported by the National Natural Science Foundation of China under Grant No. 51475262.



References

1. A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, IEEE J. Quantum Electron. 18, 1647 (1982).

2. O. Sasaki, and K. Takahashi, Appl. Opt. 27, 4139 (1988).

3. G. He, X. Wang, A. Zeng, F. Tang, and B. Huang, Chin. Opt. Lett. 5, 211 (2007).

4. O. Gerberding, Opt. Express 23, 14753 (2015).

5. K. S. Isleif, O. Gerberding, T. S. Schwarze, M. Mehmet, G. Heinzel, and F. G. Cervantes, Opt. Express 24, 1676 (2016).

6. K. Karrai, “Device for position detection,” U.S. Patent US20100259760 A1 (2010).

7. K. Karrai, and P. F. Braun, “Device and method for acquiring position with a confocal Fabry-Perot interferometer,” U.S. Patent US20110211199 A1 (2011).

8. K. Thurner, P. F. Braun, and K. Karrai, Rev. Sci. Instrum. 84, 095005 (2013).

9. K. Thurner, F. P. Quacquarelli, P. F. Braun, C. D. Savio, and K. Karrai, Appl. Opt. 54, 3051 (2015).

10. B. Wang, X. Wang, O. Sasaki, and Z. Li, Appl. Opt. 51, 1939 (2012).

11. C. Lv, F. Duan, E. Bo, X. Duan, F. Feng, and X. Fu, Appl. Opt. 53, 6206 (2014).

12. M. Madden, M. Aketagawa, T. Kumagai, Y. Maeda, and E. Okuyama, Meas. Sci. Technol. 25, 094005 (2014).

13. V. Thanh-Tung, M. Higuchi, and M. Aketagawa, Meas. Sci. Technol. 27, 105201 (2016).

14. V. Thanh-Tung, Y. Maeda, and M. Aketagawa, Measurement 94, 927 (2016).

15. C. Ni, M. Zhang, Y. Zhu, C. Hu, S. Ding, and Z. Jia, Appl. Opt. 56, 3895 (2017).

16. Y. Zheng, Y. Ren, P. An, C. Chu, X. Li, C. Xue, J. Liu, and S. Yan, Chin. Opt. Lett. 13, 020601 (2015).

17. J. Chai, M. Zhang, Y. Liu, L. Li, W. Xu, and Y. Wang, Chin. Opt. Lett. 13, 080604 (2015).


Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387