2017-10-24 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 10 , Vol. 15 , 2017    10.3788/COL201715.101102

Compressed sensing in synthetic aperture photoacoustic tomography based on a linear-array ultrasound transducer
Xiangwei Lin1, Naizhang Feng1, Yawei Qu2, Deying Chen3, Yi Shen1, and Mingjian Sun1
1 Department of Control Science and Engineering, [Harbin Institute of Technology], Harbin 1 50001 , China
2 Department of Gastroenterology, [General Hospital of Chinese People’s Armed Police Forces], Beijing 100039, China
3 Institute of Opto-electronics, [Harbin Institute of Technology], Harbin 150080, China

Chin. Opt. Lett., 2017, 15(10): pp.101102

Topic:Imaging systems
Keywords(OCIS Code): 110.5120  100.3020  170.5120  170.0110  

Photoacoustic tomography (PAT) has the unique capability of visualizing optical absorption inside several centimeters-deep biological tissue with a high spatial resolution. However, single linear-array transducer-based PAT suffers from the limited-view challenge, and thus the synthetic aperture configuration is designed that still requires multichannel data acquisition hardware. Herein, a feasible synthetic aperture PAT based on compressed sensing reconstruction is proposed. Both the simulation and experimental results tested the theoretical model and validated that this approach can improve the image resolution and address the limited-view problem while preserving the target information with a fewer number of measurements.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (706 KB)


Posted online:2017/8/11

Get Citation: Xiangwei Lin, Naizhang Feng, Yawei Qu, Deying Chen, Yi Shen, and Mingjian Sun, "Compressed sensing in synthetic aperture photoacoustic tomography based on a linear-array ultrasound transducer," Chin. Opt. Lett. 15(10), 101102(2017)

Note: This work was partially supported by the National Natural Science Foundation of China (Nos. 61371045 and 11574064), the Shenzhen Science & Technology Program, China (No. JCYJ20160429115309834), and the Science and Technology Development Plan Project of Shandong Province, China (Nos. 2015GGX103016 and 2016GGX103032).


1. L. V. Wang, and J. Yao, Nat. Methods 13, 627 (2016).

2. A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, and F. K. Tittel, Proc. SPIE 2134, 122 (1994).

3. C. Lutzweiler and D. Razansky, Sensors 13, 7345 (2013).

4. B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, J. Biomed. Opt. 17, 061202 (2012).

5. L. V. Wang and S. Hu, Science 335, 1458 (2012).

6. J. Xia and L. V. Wang, IEEE Trans. Biomed. Eng. 61, 1380 (2014).

7. L. V. Wang, Nat. Photonics 3, 503 (2009).

8. Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, Med. Phys. 31, 724 (2004).

9. M. Xu and L. V. Wang, Phys. Rev. E 67, 056605 (2003).

10. M. Ye, M. Cao, J. Yuan, X. Liu, and X. Wang, Chin. Opt. Lett. 14, 081701 (2016).

11. Y. Wang, J. Yuan, S. Du, X. Liu, and X. Wang, Chin. Opt. Lett. 13, 061001 (2015).

12. M. P. Fronheiser, S. A. Ermilov, H. P. Brecht, A. Conjusteau, R. Su, K. Mehta, and A. A. Oraevsky, J. Biomed. Opt. 15, 021305 (2010).

13. J. Xia, C. Huang, K. Maslov, M. A. Anastasio, and L. V. Wang, Opt. Lett. 38, 3140 (2013).

14. E. Mer?ep, G. Jeng, S. Morscher, P. C. Li, and D. Razansky, IEEE Trans. Ultrason. Ferroelectron. Freq. Control 62, 1651 (2015).

15. B. Huang, J. Xia, K. Maslov, and L. V. Wang, J. Biomed. Opt. 18, 655 (2013).

16. G. Li, J. Xia, K. Wang, K. Maslov, M. A. Anastasio, and L. V. Wang, QIMS 5, 57 (2014).

17. R. Ellwood, E. Zhang, P. Beard, and B. Cox, J. Biomed. Opt. 19, 126012 (2014).

18. B. T. Cox, S. R. Arridge, and P. C. Beard, Inverse Probl. Eng. 23, S95 (2007).

19. R. A. Kruger, W. I. Kiser, Jr., D. R. Reinecke, and G. A. Kruger, Med. Phys. 30, 856 (2003).

20. B. Yin, D. Xing, Y. Wang, Y. Zeng, Y. Tan, and Q. Chen, Phys. Med. Biol. 49, 1339 (2004).

21. G. R. Bashford and J. L. Morse, IEEE Trans. Med. Imag. 25, 732 (2006).

22. H. K. Zhang, E. Ergun, G. E. Trahey, and E. M. Boctor, Proc. SPIE, 9419, 94190L (2015).

23. M. K. Yapici, C. Kim, C. C. Chang, M. Jeon, Z. Guo, X. Cai, J. Zou, and L. V. Wang, J. Biomed. Opt. 17, 116019 (2012).

24. C. L. Z. Guo, L. Song, and L. V. Wang, J. Biomed. Opt. 15, 021311 (2010).

25. J. Meng, L. V. Wang, L. Ying, D. Liang, and L. Song, Opt. Express 20, 16510 (2012).

26. D. L. Donoho, IEEE Trans. Inf. Theory 52, 1289 (2006).

27. T. Liu, M. Sun, N. Feng, M. Wang, D. Chen, and Y. Shen, Chin. Opt. Lett. 14, 091701 (2016).

28. M. Xu and L. V. Wang, Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 71, 016706 (2005).

29. M. Haltmeier, T. Berer, S. Moon, and P. Burgholzer, J. Opt. 18, 114004 (2016).

30. L. Ding, X. L. Deán-Ben, and D. Razansky, IEEE Trans. Med. Imag. 35, 1883 (2016).

Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387