2017-10-18 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 10 , Vol. 15 , 2017    10.3788/COL201715.101101

Simple and effective method to improve the signal-to-noise ratio of compressive imaging
Yao Zhao, Qian Chen, Guohua Gu, and Xiubao Sui
Jiangsu Key Laboratory of Spectral Imaging and Intelligence Sense, [Nanjing University of Science and Technology], Nanjing 210094, China

Chin. Opt. Lett., 2017, 15(10): pp.101101

Topic:Imaging systems
Keywords(OCIS Code): 110.1758  100.3010  100.3020  

This Letter presents a simple and effective method to improve the signal-to-noise ratio (SNR) of compressing imaging. The main principles of the proposed method are the correlation of the image signals and the randomness of the noise. Multiple low SNR images are reconstructed firstly by the compressed sensing reconstruction algorithm, and then two-dimensional time delay integration technology is adopted to improve the SNR. Results show that the proposed method can improve the SNR performance efficiently and it is easy to apply the algorithm to the real project.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (756 KB)


Posted online:2017/7/26

Get Citation: Yao Zhao, Qian Chen, Guohua Gu, and Xiubao Sui, "Simple and effective method to improve the signal-to-noise ratio of compressive imaging," Chin. Opt. Lett. 15(10), 101101(2017)

Note: This work was supported by the National Natural Science Foundation of China (No. 11503010) and the Fundamental Research Funds for the Central Universities (No. 30916015103).


1. D. L. Donoho, IEEE Trans. Inform. Theory 52, 1289 (2006).

2. E. J. Candès, and M. B. Wakin, IEEE Signal Process. Mag. 25, 21 (2008).

3. Y. Li, Q. Li, J. Hu, and Y. Zhao, Chin. Opt. Lett 13, S11101 (2015).

4. S. Bhattacharya, T. Blumensath, B. Mulgrew, and M. Davies, in Proceeding of 14th Workshop on Statistical Signal Processing (2007), p.?448.

5. M. Lusting, D. Donoho, J. Santos, and J. Pauly, IEEE Signal Process. Mag. 25, 72 (2008).

6. T. Mao, Q. Chen, W. He, Y. Zou, H. Dai, and G. Gu, Chin. Opt. Lett. 14, 110607 (2016).

7. B. Hui, X. Tang, N. Gao, W. Zhang, and X. Zhang, Chin. Opt. Lett. 14, 110602 (2016).

8. P. Nagesh, and B. Li, in Proceeding of Acoustics, Speech and Signal Processing (2009), p.?1261.

9. M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniukm, IEEE Signal Process. Mag. 25, 83 (2008).

10. L. Gan, T. T. Do, and D. Tran, in Proceeding of European Signal Processing (2008).

11. O. Katz, Y. Bromberg, and Y. Silberberg, Appl. Phys. Lett. 95, 131110 (2009).

12. A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and L. Carron, Sci. Rep. 4, 5552 (2014).

13. M. I. Akhlaghi, and A. Dogariu, Opt. Lett. 40, 4464 (2015).

14. T. Mao, Q. Chen, W. He, Y. Zou, H. Dai, and G. Gu, Opt. Rev. 23, 571 (2016).

15. X. Sui, Q. Chen, L. Bai, and G. Gu, Infrared Laser Eng. 39, 993 (2010).

16. J. A. Tropp, and A. C. Gilbert, IEEE Trans. Inform. Theory 53, 4655 (2007).

17. C. Li, “An efficient algorithm for total variation regularization with application to the single pixel camera and compressive sensing,” M.S. Thesis (Rice University, 2009).

Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387