2017-12-15 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 10 , Vol. 15 , 2017    10.3788/COL201715.100603


Radio-frequency arbitrary waveform generation based on dispersion compensated tunable optoelectronic oscillator with ultra-wide tunability
Anle Wang, Jianghai Wo, Jin Zhang, Xiong Luo, Xin Xu, Daoming Zhang, Pengfei Du, and Lan Yu
Microwave Photonics Center, [Air Force Early Warning Academy], Wuhan 430019, China

Chin. Opt. Lett., 2017, 15(10): pp.100603

DOI:10.3788/COL201715.100603
Topic:Fiber optics and optical communication
Keywords(OCIS Code): 060.0060  350.4010  060.5625  

Abstract
Photonic generation of radio-frequency (RF) arbitrary microwave waveform with ultra-wide frequency tunable range based on a dispersion compensated optoelectronic oscillator (OEO) is proposed and experimentally demonstrated. Dispersion compensation scheme and specially designed fiber Bragg grating (FBG)-based Fabry–Perot (F-P) filters are employed in the OEO loop to realize a frequency tunable range of 3.5–45.4 GHz. An optimization process provided by the combination of an erbium-doped fiber amplifier (EDFA) and FBG is employed to improve the signal-to-noise ratio (SNR) of final RF signals. The generation of linear-frequency and phase-coded microwave waveforms, with a tunable carrier frequency ranging from 4 to 45 GHz and tuned chirping bandwidths or code rates, is experimentally demonstrated.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (919 KB)

Share:


Received:2017/4/9
Accepted:2017/7/3
Posted online:2017/7/21

Get Citation: Anle Wang, Jianghai Wo, Jin Zhang, Xiong Luo, Xin Xu, Daoming Zhang, Pengfei Du, and Lan Yu, "Radio-frequency arbitrary waveform generation based on dispersion compensated tunable optoelectronic oscillator with ultra-wide tunability," Chin. Opt. Lett. 15(10), 100603(2017)

Note:



References

1. D. Barton, IEEE Aerosp. Electron. Syst. Mag. 20, 23 (2005).

2. P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, and A. Malacarne, Nature 507, 341 (2014).

3. J. D. Mckinney, D. E. Leaird, and A. M. Weiner, Opt. Lett. 27, 1345 (2002).

4. C. Wang, and J. Yao, IEEE Photon. Technol. Lett. 24, 1493 (2012).

5. C. Wang, and J. Yao, IEEE Photon. Technol. Lett. 21, 1375 (2009).

6. Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, IEEE Photon. Technol. Lett. 23, 712 (2011).

7. P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, J. Lightwave Technol. 30, 1638 (2012).

8. Y. Zhang, and S. Pan, Opt. Lett. 38, 766 (2013).

9. X. Li, S. Zhao, Z. Zhu, K. Qu, T. Lin, and S. Pan, Chin. Opt. Lett. 15, 070603 (2017).

10. H. Chen, T. Ning, J. Li, L. Pei, J. Yuan, and X. Wen, Chin. Opt. Lett. 15, 060605 (2017).

11. S. Liu, Z. Qian, R. Wang, T. Pu, and T. Fang, Chin. Opt. Lett. 10, 120401 (2012).

12. X. Li, S. Zhao, Y. Zhang, Z. Zhu, and S. Pan, IEEE Photon. Technol. Lett. 28, 1980 (2016).

13. W. Li, F. Kong, and J. Yao, J. Lightwave Technol. 31, 3780 (2013).

14. B. Yang, X. Jin, Y. Chen, J. Zhou, X. Zhang, S. Zheng, and H. Chi, IEEE Photon. Technol. Lett. 25, 921 (2013).

15. Z. Z. Tang, S. L. Pan, D. Zhu, R. H. Guo, Y. J. Zhao, M. H. Pan, and D. Ben, and YaoJ. P., IEEE Photon. Technol. Lett. 24, 1487 (2012).

16. Y. Wang, X. Jin, Y. Zhu, X. Zhang, and S. Zheng, and ChiH., IEEE Photon. Technol. Lett. 27, 947 (2015).

17. J. Dai, Y. Dai, F. Yin, Y. Zhou, J. Li, Y. Fan, and K. Xu, Chin. Opt. Lett. 14, 110701 (2016).


Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387