2019-01-16 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 10 , Vol. 15 , 2017    10.3788/COL201715.100302

Target recognition based on phase noise of received laser signal in lidar jammer
Mahdi Nouri, Mohsen Mivehchy, and Mohamad Farzan Sabahi
Department of Electrical Engineering, [University of Isfahan], Isfahan, Iran

Chin. Opt. Lett., 2017, 15(10): pp.100302

Topic:Coherence optics and statistical optics
Keywords(OCIS Code): 030.5630  050.5080  060.5625  070.1170  070.6020  

In this Letter, a method based on the effects of imperfect oscillators in lasers is proposed to distinguish targets in continuous wave tracking lidar. This technique is based on the fact that each lidar signal source has a specific influence on the phase noise that makes real targets from the false ones. A simulated signal is produced by complex circuits, modulators, memory, and signal oscillators. For example, a deception laser beam has an unequal and variable phase noise from a real target. Thus, the phase noise of transmitted and received signals does not have the same power levels and patterns. To consider the performance of the suggested method, the probability of detection (PD) is shown for various signal-to-noise ratios and signal-to-jammer ratios based on experimental outcomes.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (287 KB)


Posted online:2017/7/11

Get Citation: Mahdi Nouri, Mohsen Mivehchy, and Mohamad Farzan Sabahi, "Target recognition based on phase noise of received laser signal in lidar jammer," Chin. Opt. Lett. 15(10), 100302(2017)



1. L. Lu, J. Yang, L. Zhai, R. Wang, Z. Cao, and B. Yu, Opt. Express 20, 8598 (2012).

2. R. S. Matharu, J. Perchoux, R. Kliese, Y. L. Lim, and A. D. Rakic, Opt. Lett. 36, 3690 (2011).

3. B. Ruth, Opt. Laser Technol. 19, 83 (1987).

4. G. Giuliani, M. Norgia, S. Donati, and T. Bosch, J. Opt. A 4, S283 (2002).

5. L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, IEEE Trans. Instrum. Meas. 53, 223 (2004).

6. R. N. Bracewell, “The basic theorems,” in The Fourier Transform and Its Applications (McGraw Hill, 2000), Chap. 6.

7. L. T. Wang, K. Iiyama, F. Tsukada, N. Yoshida, and K.-I. Hayashi, Opt. Lett. 18, 1095 (1993).

8. R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. Ahmed, Appl. Phys. B 85, 149 (2006).

9. Z. Ma, C. Zhang, P. Ou, G. Luo, and Z. Zhang, Chin. Opt. Lett. 6, 261 (2008).

10. S. J. Roome, Electron. Commun. Eng. J. 2, 147 (1990).

11. D. Gold, and H. Ur, Electron. Lett. 29, 411 (1993).

12. K. Iiyama, L.-T. Wang, and K. Hayashi, J. Lightwave Technol. 14, 173 (1996).

13. M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, Opt. Eng. 40, 10 (2001).

14. S. D. Berger, IEEE Trans. Aerosp. Electron. Syst. 39, 725 (2003).

15. J. Zhang, X. Zhu, and H. Wang, Electron. Lett. 45, 1052 (2009).

16. M. Greco, F. Gini, and A. Farina, IEEE Trans. Signal Process. 56, 1984 (2008).

17. M. Nouri, M. Mivehchy, and S. A. Aghdam, in IEEE 6th International Conference on Computing Communication and Networking Technologies (ICCCNT) (2015), p. 1.

18. J. A. Lopez-Salcedo, IEEE Signal Process. Lett. 16, 153 (2009).

19. H. Gheidi, and A. Banai, IEEE Trans. Microwave Theory Tech. 58, 468 (2010).

20. D. Eliyahu, D. Seidel, and L. Maleki, IEEE Trans. Microwave Theory Tech. 56, 449 (2008).

21. K. H. Lee, J. Y. Kim, and W. Y. Choi, IEEE Photon. Technol. Lett. 19, 1982 (2007).

22. L. Zhang, A. Poddar, U. Rohde, and A. Daryoush, IEEE Photon. J. 5 (2013).

Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备15018463号-7 公安备案沪公网安备 31011402005522号