2017-10-18 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 10 , Vol. 15 , 2017    10.3788/COL201715.100101


Development and application of automated vicarious calibration system
Wei Wei1;2, Shuai Song3, Yangang Sun4, Ganggang Qiu1;2, Xin Li1, and Xiaobing Zheng1
1 Key Laboratory of Optical Calibration and Characterization, [Anhui Institute of Optics and Fine Mechanics], Chinese Academy of Sciences, Hefei 230031 , China
2 [University of Sciences and Technology of China], Hefei 2 3002 6, China
3 [Troop 61741 of PLA], Beijing 100094, China
4 [Shanghai Maritime University], Shanghai 201306, China

Chin. Opt. Lett., 2017, 15(10): pp.100101

DOI:10.3788/COL201715.100101
Topic:Atmospheric optics and oceanic optics
Keywords(OCIS Code): 010.0280  280.4788  120.0280  120.5630  

Abstract
In order to improve the frequency and precision of radiometric calibration, the automated vicarious calibration system (AVCS) is developed and deployed at the Dunhuang test site to perform vicarious calibration without the in situ manned measurements. The surface and atmospheric parameters are automatically collected by AVCS. An absolute radiometric calibration approach based on AVCS is proposed. Six successful calibrations of the Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) are conducted. The results are in good agreement with the on-board calibration system with all the relative differences less than 4%. It enables us to monitor the change of a sensor over long time scales.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (592 KB)

Share:


Received:2017/4/7
Accepted:2017/7/5
Posted online:2017/7/26

Get Citation: Wei Wei, Shuai Song, Yangang Sun, Ganggang Qiu, Xin Li, and Xiaobing Zheng, "Development and application of automated vicarious calibration system," Chin. Opt. Lett. 15(10), 100101(2017)

Note: This work was supported by the National Natural Science Foundation of China (No. 61505222), the Civil Aerospace Technology Advance Research Project (No. D040401), the United Foundation of Chinese Academy of Sciences (No. 6141A01011602), the Knowledge Innovation Program of the Chinese Academy of Sciences (No. CXJJ-15S103), and the Natural Science Foundation of Anhui Province (No. 1508085QD80).



References

1. K. J. Thome, Remote Sens. Environ. 78, 27 (2001).

2. J. S. Czapla-Myers, K. J. Thome, and N. P. Leisso, Proc. SPIE 6684, 668407 (2007).

3. A. Meygert, R. Santer, and B. Berthelot, Proc. SPIE 8153, 815311 (2011).

4. P. N. Slater, S. F. Biggar, K. J. Thome, D. I. Gellman, and P. R. Spyak, J. Atmos. Oceanic Technol. 13, 349 (1996).

5. S. F. Biggar, “In-flight methods for satellite sensor absolute radiometric calibration ,” Ph.D thesis (University of Arizona, 1990).

6. J. S. Czapla-Myers, K. J. Thome, B. R. Cocilovo, J. T. McCorkel, and J. H. Buchanan, Proc. SPIE 7081, 70810I (2008).

7. M. Dinguirard, and P. N. Slater, Remote Sens. Environ. 68, 194 (1999).

8. J. S. Czapla-Myers, “Automated ground-based methodology in support of vicarious calibration ,” Ph.D. thesis (University of Arizona, 2006).

9. J. S. Czapla-Myers, and N. P. Leisso, Proc. SPIE 7807, 78070R (2010).

10. D. X. Kerola, C. J. Bruegge, H. N. Gross, and M. C. Helmlinger, IEEE Trans. Geosci. Remote Sens. 47, 1244 (2009).

11. N. J. Anderson, and J. S. Czapla-Myers, Proc. SPIE 8866, 88660N (2010).

12. K. J. Thome, J. S. Czapla-Myers, N. P. Leisso, J. T. McCorkel, and J. H. Buchanan, in Proceedings of IEEE International Geoscience and Remote Sensing Symposium (2008), p.?1332.

13. X. Li, Y. Yin, E. Liu, Y. Zhang, L. Xun, W. Wei, Z. Zhang, G. Qiu, Q. Zhang, and X. Zheng, Proc. SPIE 9264, 92640V (2014).

14. X. B. Zheng, J. Atmos. Environ. Opt. 9, 2 (2014).

15. G. Qiu, X. Li, X. Zheng, J. Yan, and Y. Sun, Chin. Opt. Lett. 14, 121201 (2016).

16. W. Wei, X. Li, C. Zhao, G. Qiu, and X. Zheng, Proc. SPIE 10156, 101561M (2016).

17. Y. Li, Z. Rong, L. Zhang, L. Sun, and N. Xu, Proc. SPIE 9264, 926415 (2014).

18. X. Li, X. B. Zheng, and Y. P. Yin, J. Atmos. Environ. Opt. 9, 17 (2014).

19. Y. P. Yin, X. Li, X. B. Zheng, Z. P. Zhang, and W. Wei, J. Atmos. Environ. Opt. 11, 44 (2016).

20. Y. P. Yin, “Development of automated site radiometer ,” Master thesis (University of Chinese Academy of Sciences, 2015).

21. G. Qiu, X. Li, X. Zheng, Q. Zhang, and J. Yan, Proc. SPIE 10155, 101551R (2016).

22. M. Xia, J. Li, Z. Li, D. Gao, W. Pang, D. Li, and X. Zheng, Chin. Opt. Lett. 12, 121201 (2014).

23. H. H. Asadov, and I. G. Chobanzadeh, Chin. Opt. Lett. 7, 760 (2009).

24. N. P. Leisso, and J. S. Czapla-Myers, Proc. SPIE 8153, 815210 (2011).

25. J. S. Czapla-Myers, N. P. Leisso, N. J. Anderson, and S. F. Biggar, Proc. SPIE 8390, 83902B (2012).

26. Z. L. Liu, R. Chen, N. F. Liao, and Y. Wang, Chin. Opt. Lett. 10, S11201 (2012).

27. J. Czapla-Myers, J. McCorkel, N. Anderson, K. Thome, S. Biggar, D. Helder, D. Aaron, L. Leigh, and N. Mishra, Remote Sens. 7, 600 (2015).

28. S. Fan, M. Liu, and H. Shen, Chin. Opt. Lett. 12, 051201 (2014).


Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387