2019-03-22 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 08 , Vol. 15 , 2017    10.3788/COL201715.082401

Multiple directional enhanced light source through a periodic metal grating structure
Le Yu1;2, Xiao Xiong1;2, Di Liu1;2, Lantian Feng1;2, Ming Li1;2, Linjun Wang3, Guoping Guo1;2, Guangcan Guo1;2, and Xifeng Ren1;2
1 Key Laboratory of Quantum Information, CAS, [University of Science and Technology of China], Hefei, 230026, China
2 Synergetic Innovation Center of Quantum Information &
Quantum Physics, [University of Science and Technology of China], Hefei, 2 3002 6, China
3 Center for Micro- and Nanoscale Research and Fabrication, [University of Science and Technology of China], Hefei, 23 0026, China

Chin. Opt. Lett., 2017, 15(08): pp.082401

Topic:Optics at surfaces
Keywords(OCIS Code): 240.6680  070.0070  050.0050  

Higher emission rates and controllable emission direction are big concerns when it comes to finding a good single photon source. Recently, surface plasmons are introduced to this application, as they can manipulate and enhance the luminescence of single emitters. Here, we experimentally achieve a wide-area multiple directional enhanced light source through periodic metal grating structures. The surface-plasmon-coupled emission can have multiple precisely emission angles by just changing the period of the grating. Our result indicates that metal plasmonic grating can be used as a productive quantum device for unidirectional quantum light sources in quantum optics.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (397 KB)


Posted online:2017/5/27

Get Citation: Le Yu, Xiao Xiong, Di Liu, Lantian Feng, Ming Li, Linjun Wang, Guoping Guo, Guangcan Guo, and Xifeng Ren, "Multiple directional enhanced light source through a periodic metal grating structure," Chin. Opt. Lett. 15(08), 082401(2017)

Note: This work was supported by the National Natural Science Foundation of China (Nos. 11374289 and 61590932), the National Key R & D Program (No. 2016YFA0301700), the Innovation Funds from the Chinese Academy of Sciences (No. 60921091), the Fundamental Research Funds for the Central Universities, and the Open Fund of the State Key Laboratory on Integrated Optoelectronics (No. IOSKL2015KF12). This work was partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication.


1. V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, Science 287, 1011 (2000).

2. C. Murray, D. Norris, and M. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993).

3. K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, Phys. Rev. Lett. 89, 117401 (2002).

4. L.-L. Wang, C.-L. Zou, X.-F. Ren, A.-P. Liu, L. Lv, Y.-J. Cai, F.-W. Sun, G.-C. Guo, and G.-P. Guo, Appl. Phys. Lett. 99, 061103 (2011).

5. O. E. Semonin, J. M. Luther, S. Choi, H.-Y. Chen, J. Gao, A. J. Nozik, and M. C. Beard, Science 334, 1530 (2011).

6. P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulovic, Nano Lett. 9, 2532 (2009).

7. J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, Phys. Rev. Lett. 95, 017402 (2005).

8. P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, Nature 430, 654 (2004).

9. E. M. Purcell, Phys. Rev. 69, 37 (1946).

10. J. B. Khurgin, G. Sun, and R. A. Soref, J. Am. Opt. Soc. B. 24, 1968 (2007).

11. D. Y. Lei, and H. C. Ong, Appl. Phys. Lett. 91, 211107 (2007).

12. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, Nat. Mater. 3, 601 (2004).

13. V. J. Sorger, and X. Zhang, Science 333, 709 (2011).

14. J.-H. Song, T. Atay, S. Shi, H. Urabe, and A. V. Nurmikko, Nano Lett. 5, 1557 (2005).

15. Z.-K. Zhou, D. Y. Lei, J. Liu, X. Liu, J. Xue, Q. Zhu, H. Chen, T. Liu, Y. Li, H. Zhang, and X. Wang, Adv. Opt. Mat. 2, 56 (2014).

16. I. L. Medintz, S. A. Trammell, H. Mattoussi, and J. M. Mauro, J. Am. Chem. Soc. 126, 30 (2004).

17. J. Zhang, J. Yang, H. Lu, W. Wu, J. Huang, and S. Chang, Chin. Opt. Lett. 13, 091301 (2015).

18. B. Alén, F. Bickel, K. Karrai, R. J. Warburton, and P. M. Petroff, Appl. Phys. Lett. 11, 83 (2003).

19. P. Frantsuzov, M. Kuno, B. Jankó, and R. A. Marcus, Nat. Phys. 4, 519 (2008).

20. T. Ma, X. Yuan, W. Ye, W. Xu, S. Qin, and Z. Zhu, Chin. Opt. Lett. 12, 020501 (2014).

21. T. Sadi, J. Oksanen, J. Tulkki, P. Mattila, and J. Bellessa, IEEE J. Sel. Top. Quantum Electron. 19, 1 (2013).

22. T. Sadi, J. Oksanen, and J. Tulkki, IEEE J. Quantum Electron. 50, 141 (2014).

23. R. Zhang, Y. Wang, Y. Zhang, Z. Feng, F. Qi, L. Liu, and W. Zheng, Chin. Opt. Lett. 12, 020502 (2014).

24. B. Gallinet, A. M. Kern, and O. J. F. Martin, J. Opt. Soc. Am. A 27, 2261 (2010).

25. P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, Nature 430, 654 (2004).

26. A. A. Darweesh, S. J. Bauman, and J. B. Herzog, Photon. Res. 4, 173 (2016).

27. M. Li, C.-L. Zou, X.-F. Ren, X. Xiong, Y.-J. Cai, G.-P. Guo, L.-M. Tong, and G.-C. Guo, Nano Lett. 15, 2380 (2015).

28. H. K. Fu, C. W. Chen, C. H. Wang, T. T. Chen, and Y. F. Chen, Opt. Express 16, 6361 (2008).

29. E. Homeyer, P. Mattila, J. Oksanen, T. Sadi, H. Nykanen, S. Suihkonen, C. Symonds, J. Tulkki, F. Tuomisto, M. Sopanen, and J. Bellessa, Appl. Phys. Lett. 102, 081110 (2013).

30. A. Kumar, J.-C. Weeber, A. Bouhelier, F. Eloi, S. Buil, X. Quélin, M. Nasilowski, B. Dubertret, J.-P. Hermier, and G. C. des Francs, Sci. Rep. 5, 16796 (2015).

31. L. Lu, L.-L. Wang, C.-L. Zou, X.-F. Ren, C.-H. Dong, F.-W. Sun, S.-H. Yu, and G.-C. Guo, J. Phys. Chem. C 116, 23779 (2012).

32. T. Pons, I. L. Medintz, K. E. Sapsford, S. Higashiya, A. F. Grimes, D. S. English, and H. Mattoussi, Nano Lett. 7, 3157 (2007).

33. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, Phys. Rev. Lett. 95, 013904 (2005).

34. O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, Nano Lett. 2, 1449 (2002).

35. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, Science 329, 930 (2010).

36. T. Sadi, J. Oksanen, and J. Tulkki, J. Appl. Phys. 114, 223104 (2013).

37. G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, Nat. Photon. 8, 835 (2014).

38. J. Zhang, Y.-H. Ye, X. Wang, P. Rochon, and M. Xiao, Phys. Rev. B. 72, 201306 (2005).

Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备15018463号-7 公安备案沪公网安备 31011402005522号