2017-08-20 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 08 , Vol. 15 , 2017    10.3788/COL201715.082302


Noise suppression for the detection laser of a nuclear magnetic resonance gyroscope based on a liquid crystal variable retarder
Binquan Zhou1;2, Guanqun Lei1;2, Linlin Chen1;2, Wenfeng Wu1;2, Zhuo Wang1;2, Xiaofeng Meng1;2, and Jiancheng Fang1;2
1 School of Instrumentation Science and Opto-Electronics Engineering, [Beihang University], Beijing 1 001 91 , China
2 [Key Laboratory on Inertial Technology], Beijing 100191, China

Chin. Opt. Lett., 2017, 15(08): pp.082302

DOI:10.3788/COL201715.082302
Topic:Optical devices
Keywords(OCIS Code): 230.0230  020.0020  

Abstract
In this Letter, the liquid crystal variable phase retarder is applied for the accurate modulation of the laser power in a detection system and the construction of a system that suppresses the influence of laser noise on the gyro’s bias instability. A closed-loop control method for a laser noise suppression system is proposed. We obtain a power stability index of 0.038% in a 3-h continuous test, and the nuclear magnetic resonance gyroscope bias instability reaches 1°/h. The proposed control method effectively improves the signal-to-noise ratio of the gyroscope detection signal, which lays the technical foundation for future research work.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (726 KB)

Share:


Received:2017/1/6
Accepted:2017/5/19
Posted online:2017/6/12

Get Citation: Binquan Zhou, Guanqun Lei, Linlin Chen, Wenfeng Wu, Zhuo Wang, Xiaofeng Meng, and Jiancheng Fang, "Noise suppression for the detection laser of a nuclear magnetic resonance gyroscope based on a liquid crystal variable retarder," Chin. Opt. Lett. 15(08), 082302(2017)

Note: This work was supported by the National Natural Science Foundation of China (Nos. 61673041, 61673041, and 61227902) and the National High Technology Research and Development Program 863 (No. 2014AA123401).Author Contributions: Yueyang Zhai and Zhaohui Hu conceived and designed the experiments, Wei Quan performed the experiments, and Qing Liang analyzed the data.



References

1. D. Tazartes, in IEEE International Symposium on Inertial Sensors and Systems (2014).

2. T. W. Kornack, R. K. Ghosh, and M. V. Romalis, Phys. Rev. Lett. 95, 23 (2005).

3. M. Larsen, and M. Bulatowicz, in IEEE International Frequency Control Symposium Proceedings (2012).

4. J. Kitching, S. Knappe, and E. A. Donley, IEEE Sens. J. 11, 9 (2011).

5. X. H. Liu, H. Luo, T. L. Qu, K. Y. Yang, and Z. C. Ding, AIP Adv. 5, 10 (2015).

6. J. C. Fang, and J. Qin, Sensors 12, 5 (2012).

7. D. Meyer, and M. Larsen, Gyroscopy Navig. 5, 2 (2014).

8. W. Loh, M. T. Hummon, H. F. Leopardi, T. M. Fortier, F. Quinlan, J. Kitching, S. B. Papp, and S. A. Diddams, Opt. Express 24, 13 (2016).

9. E. Oh, R. A. Horne, and C. A. Sackett, Rev. Sci. Instrum. 87, 6 (2016).

10. A. Al-Masoudi, S. Dorscher, S. Hafner, U. Sterr, and C. Lisdat, Phys. Rev. A 92, 6 (2015).

11. K. Saleh, J. Millo, A. Didier, Y. Kersale, and C. Lacroute, Appl. Opt. 54, 32 (2015).

12. B. T. R. Christensen, M. R. Henriksen, S. A. Schaffer, P. G. Westergaard, D. Tieri, J. Ye, M. J. Holland, and J. W. Thomsen, Phy. Rev. A 92, 5 (2015).

13. B. Cheng, Z. Y. Wang, B. Wu, A. P. Xu, Q. Y. Wang, Y. F. Xu, and Q. Lin, Chin. Phys. B 23, 10 (2014).

14. A. Lezama, R. Rebhi, A. Kastberg, S. Tanzilli, and R. Kaiser, Phys. Rev. A 92, 3 (2015).

15. B. Z. Tan, Y. Tian, H. F. Lin, J. H. Chen, and S. H. Gu, Opt. Lett. 40, 16 (2015).

16. R. J. Li, W. F. Fan, L. W. Jiang, L. H. Duan, W. Quan, and J. C. Fang, Phys. Rev. A 94, 3 (2016).

17. K. W. Li, Z. B. Wang, Y. H. Chen, C. Q. Yang, and R. Zhang, Acta Phys. Sin. 64, 18 (2015).

18. L. Zhao, and Q. Zhao, Chin. Opt. Lett. 8, 107 (2010).

19. O. Kalman, Z. Darazs, F. Brennecke, and P. Domokos, Phys. Rev. A 93, 3 (2016).

20. X. Fang, S. Yuan, W. Liu, B. Yan, and B. Huang, Chin. Opt. Lett. 13, 033101 (2015).

21. W. Qi, Y. Jiang, X. Li, L. Jin, Z. Bi, and L. Ma, Chin. Opt. Lett. 14, 101401 (2016).

22. P. Oxley, and J. Wihbey, Rev. Sci. Instrum. 87, 9 (2016).

23. Y. Zhang, H. J. Zhao, and X. Cheng, Spectrosc. Spectral Anal. 31, 5 (2011).

24. Y. L. Wang, R. Zhang, and Z. B. Wang, Spectrosc. Spectral Anal. 35, 8 (2015).

25. J. M. López-Téllez, and N. C. Bruce, Proc. SPIE 8785, 87852J (2013).

26. L. J. Salazar-Serrano, D. Janner, N. Brunner, V. Prunei, and J. Torres, Phys. Rev. A 89, 1 (2014).

27. K. D. Quoc, Opt. Quantum Electron. 48, 6 (2016).

28. J. Kong, V. G. Lucivero, R. Jimenez-Martinez, and M. W. Mitchell, Rev. Sci. Instrum. 86, 7 (2015).

29. T. V. Radina, Phys. Rev. A 379, 36 (2015).

30. S. Knappe, V. Shah, P. Schwindt, and J. Kitching, Appl. Phys. Lett. 85, 9 (2004).

31. I. A. Sulai, R. Wyllie, M. Kauer, G. S. Smetana, R. T. Wakai, and T. G. Walker, Opt. Lett. 38, 6 (2013).

32. L. L. Yan, J. Q. Zhang, J. Jing, and M. Feng, Phys. Rev. A 379, 39 (2015).

33. P. Bushev, G. Hetet, L. Slodicka, D. Rotter, M. A. Wilson, F. Schmidt-Kaler, J. Eschner, and R. Blatt, Phys. Rev. Lett. 110, 13 (2013).

34. C. X. Zhu, Y. Y. Feng, X. Y. Ye, Z. Y. Zhou, Y. J. Zhou, and H. B. Xue, Acta Phys. Sin. 57, 2 (2008).


Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387