2017-08-18 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 08 , Vol. 15 , 2017    10.3788/COL201715.082301


4×25 GHz uni-traveling carrier photodiode arrays monolithic with InP-based AWG demultiplexers using the selective area growth technique
Han Ye1, Qin Han1;2, Qianqian Lv1, Pan Pan1, Junming An1;3, Xiaohong Yang1;3, Yubing Wang1, and Rongrui Liu1
1 State Key Laboratory of Integrated Optoelectronics, [Institute of Semiconductors], Chinese Academy of Sciences, Beijing 1 00083, China
2 School of Electronic, Electrical and Communication Engineering, [University of Chinese Academy of Sciences], Beijing 100049, China
3 College of Materials Science and Opto-Electronic Technology, [University of Chinese Academy of Sciences], Beijing 100049, China

Chin. Opt. Lett., 2017, 15(08): pp.082301

DOI:10.3788/COL201715.082301
Topic:Optical devices
Keywords(OCIS Code): 230.3120  230.5170  230.7380  

Abstract
We use the selective area growth (SAG) technique to monolithically integrate InP-based 4-channel arrayed waveguide gratings (AWGs) with uni-traveling carrier photodiode arrays at the O-band. Two kinds of channel spacing demultiplexers of 20 nm and 800 GHz are adopted for potential 100 Gbps coarse wavelength division multiplexing and local area network wavelength division multiplexing systems, with an evanescent coupling plan to facilitate the SAG technique into device fabrication. The monolithic chips in both channel spacings exhibit uniform bandwidths over 25 GHz and a photodiode responsivity of 0.81 A/W for each channel, in agreement with the simulated quantum efficiency of 80%. Cross talk levels are below ?20 dB for both channel spacing chips.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (1007 KB)

Share:


Received:2017/3/12
Accepted:2017/5/18
Posted online:2017/6/13

Get Citation: Han Ye, Qin Han, Qianqian Lv, Pan Pan, Junming An, Xiaohong Yang, Yubing Wang, and Rongrui Liu, "4×25 GHz uni-traveling carrier photodiode arrays monolithic with InP-based AWG demultiplexers using the selective area growth technique," Chin. Opt. Lett. 15(08), 082301(2017)

Note: This work was supported by the National High-Tech Research and Development Program of China (No. 2015AA016902) and the National Natural Science Foundation of China (Nos. 61635010, 61674136, and 61435002).



References

1. F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. J. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, IEEE J. Sel. Top. Quantum Electron. 17, 1470 (2011).

2. Z. Zhao, Y. Liu, Z. Zhang, X. Chen, J. Liu, and N. Zhu, Chin. Opt. Lett. 14, 120603 (2016).

3. Y. Yoshikuni, IEEE J. Sel. Top. Quantum Electron. 8, 1102 (2002).

4. P. Pan, J. M. An, Y. Wang, J. S. Zhang, L. L. Wang, Y. Qi, Q. Han, and X. W. Hu, Opt. Laser Technol. 75, 177 (2015).

5. L. A. Coldren, S. C. Nicholes, L. Johansson, S. Ristic, R. S. Guzzon, E. J. Norberg, and U. Krishnamachari, J. Lightwave Technol. 29, 554 (2011).

6. K. A. Williams, E. A. J. M. Bente, D. Heiss, Y. Jiao, K. Lawniczuk, X. J. M. Leijtens, J. J. G. M. van der Tol, and M. K. Smit, Photon. Res. 3, B60 (2015).

7. L. Han, S. Liang, H. Zhu, and W. Wang, Chin. Opt. Lett. 13, 081301 (2015).

8. M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, Semicond. Sci. Technol. 29, 083001 (2014).

9. T. Ishibashi, S. Kodama, N. Shimizu, and T. Furuta, Jpn. J. Appl. Phys. 36, 6263 (1997).

10. D.-H. Jun, J.-H. Jang, I. Adesida, and J.-I. Song, Jpn. J. Appl. Phys. 45, 3475 (2006).

11. Z. Li, H.-P. Pan, H. Chen, A. Beling, and J. C. Campbell, IEEE J. Quantum Electron. 46, 626 (2010).

12. T. Shi, B. Xiong, C. Sun, and Y. Luo, Chin. Opt. Lett. 9, 082302 (2011).

13. https://kb.lumerical.com/en/layout_analysis_pabs_simple.html.

14. H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, IEEE J. Sel. Top. Quantum Electron. 10, 709 (2004).

15. S. Adachi, Physical Properties of III-V Semiconductor Compounds: InP, InAs, GaAs, GaP, InGaAs, and InGaAsP (Wiley, 1992), Chap. 8.


Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387