2017-08-21 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 08 , Vol. 15 , 2017    10.3788/COL201715.081901

Matrix formalism for radiating polarization sheets in multilayer structures of arbitrary composition
Hui Shi, Yu Zhang, Hongqing Wang, and Weitao Liu
Physics Department, State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (MOE), Collaborative Innovation Center of Advanced Microstructures (Nanjing), [Fudan University], Shanghai 200433, China

Chin. Opt. Lett., 2017, 15(08): pp.081901

Topic:Nonlinear optics
Keywords(OCIS Code): 190.4400  260.3160  310.4165  310.6860  

In optical studies on layered structures, quantitative analysis of radiating interfaces is often challenging due to multiple interferences. We present here a general and analytical method for computing the radiation from two-dimensional polarization sheets in multilayer structures of arbitrary compositions. It is based on the standard characteristic matrix formalism of thin films, and incorporates boundary conditions of interfacial polarization sheets. We use the method to evaluate the second harmonic generation from a nonlinear thin film, and the sum-frequency generation from a water/oxide interface, showing that the signal of interest can be strongly enhanced with optimal structural parameters.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (314 KB)


Posted online:2017/5/15

Get Citation: Hui Shi, Yu Zhang, Hongqing Wang, and Weitao Liu, "Matrix formalism for radiating polarization sheets in multilayer structures of arbitrary composition," Chin. Opt. Lett. 15(08), 081901(2017)

Note: This work was supported by the National Natural Science Foundation of China and the National Basic Research Program of China (Nos. 11374065, 11622429, and 11290161).


1. M.-H. Chiu, C. Zhang, H.-W. Shiu, C.-P. Chuu, C.-H. Chen, C.-Y. S. Chang, C.-H. Chen, M.-Y. Chou, C.-K. Shih, and L.-J. Li, Nat. Commun. 6, 7666 (2015).

2. S. Héron, P. Bouchon, and R. Ha?dar, Phys. Rev. A 94, 033831 (2016).

3. J. Zhao, H. He, H. Wang, K. Yi, B. Wang, and Y. Cui, Chin. Opt. Lett. 14, 083401 (2016).

4. J. Liu, W. Zhang, H. Cui, J. Sun, H. Li, K. Yi, and M. Zhu, Chin. Opt. Lett. 12, 083101 (2014).

5. M. Sieger, and B. Mizaikoff, Photon. Res. 4, 106 (2016).

6. E. Feigenbaum, K. Diest, and H. A. Atwater, Nano Lett. 10, 2111 (2010).

7. M.-X. Wang, C. Liu, J.-P. Xu, F. Yang, L. Miao, M.-Y. Yao, C. L. Gao, C. Shen, X. Ma, X. Chen, Z.-A. Xu, Y. Liu, S.-C. Zhang, D. Qian, J.-F. Jia, and Q.-K. Xue, Science 336, 52 (2012).

8. W. T. Liu, and Y. R. Shen, Proc. Natl. Acad. Sci. U. S. A. 111, 1293 (2014).

9. T. Jiang, H. Liu, D. Huang, S. Zhang, Y. Li, X. Gong, Y.-R. Shen, W.-T. Liu, and S. Wu, Nat. Nanotechnol. 9, 825 (2014).

10. H.-F. Wang, Prog. Surf. Sci. 91, 155 (2016).

11. D. A. Kopylov, S. E. Svyakhovskiy, L. V. Dergacheva, V. A. Bushuev, B. I. Mantsyzov, and T. V. Murzina, Phys. Rev. A 93, 053840 (2016).

12. Y. Cao, S. Chen, Y. Li, Y. Gao, D. Yang, Y. R. Shen, and W. T. Liu, Sci. Adv. 2, e1601162 (2016).

13. X. Zhuang, D. Kim, P. Miranda, and Y. R. Shen, Phys. Rev. B Condens. Matter 59, 12632 (1999).

14. W.-T. Liu, and Y. R. Shen, Phys. Rev. B 78, 024302 (2008).

15. X. Lu, M. L. Clarke, D. Li, X. Wang, G. Xue, and Z. Chen, J. Phys. Chem. C 115, 13759 (2011).

16. H. Shi, Y. Zhang, M. Yao, F. Ji, D. Qian, S. Qiao, Y. R. Shen, and W.-T. Liu, Phys. Rev. B 94, 205307 (2016).

17. M. C. Larciprete, A. Belardini, M. G. Cappeddu, D. de Ceglia, M. Centini, E. Fazio, C. Sibilia, M. J. Bloemer, and M. Scalora, Phys. Rev. A 77, 013809 (2008).

18. Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, 2003).

19. O. Arnon, and P. Baumeister, Appl. Opt. 19, 1853 (1980).

20. M. Born, and E. Wolf, Principles of Optics (Cambridge University Press, 1999).

21. V. N. Konopsky, E. V. Alieva, S. Y. Alyatkin, A. A. Melnikov, S. V. Chekalin, and V. M. Agranovich, Light Sci. Appl. 5, e16168 (2016).

22. I. P. Kaminow, J. R. Carruthers, E. H. Turner, and L. W. Stulz, Appl. Phys. Lett. 22, 540 (1973).

23. Z. C. Tiu, H. Ahmad, A. Zarei, and S. W. Harun, Chin. Opt. Lett. 14, 041901 (2016).

24. D. Wilk, D. Johannsmann, C. Stanners, and Y. R. Shen, Phys. Rev. B 51, 10057 (1995).

25. D. Lis, E. H. Backus, J. Hunger, S. H. Parekh, and M. Bonn, Science 344, 1138 (2014).

26. J. A. McGuire, and Y. R. Shen, Science 313, 1945 (2006).

27. A. Myalitsin, S.-H. Urashima, S. Nihonyanagi, S. Yamaguchi, and T. Tahara, J. Phys. Chem. C 120, 9357 (2016).

Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387