2017-08-21 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 08 , Vol. 15 , 2017    10.3788/COL201715.081601

Energy transfer between Ce3+ and Sm3+ in Zn2GeO4 phosphor with the native defects for light-emitting diodes
Yushuang Qi1, Lei Zhao2, Wenjuan Bian1, Xue Yu1;3, Xuhui Xu1;3, and Jianbei Qiu1;3
1 College of Materials Science and Engineering, [Kunming University of Science and Technology], Kunming 650093, China
2 Department of Physics and Information Technology,[ Baoji University of Arts and Sciences], Baoji 72 1016, China
3 [Key Laboratory of Advanced Materials of Yunnan Province], Kunming 650093 , China

Chin. Opt. Lett., 2017, 15(08): pp.081601

Keywords(OCIS Code): 160.0160  230.0230  300.0300  

A series of Ce3+, Sm3+-doped Zn2GeO4 phosphors are prepared by the solid-state reaction. A blue photoluminescence (PL) of Zn2GeO4 is observed as the recombination of the electrons trapped on VO? and Zni? with holes trapped on VGe and VZn′. The energy transfer process between Ce3+ and Sm3+ is confirmed by the PL spectra and decay curves, and the emission colors can be adjusted from blue to orange–red. Furthermore, we verify unambiguously that the energy transfer from Ce3+ to Sm3+ occurs. Besides, Ce3+ ions can act as a bridge, possibly promoting the energy transfer from the Zn2GeO4 host matrix to Sm3+ ions.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (700 KB)


Posted online:2017/6/12

Get Citation: Yushuang Qi, Lei Zhao, Wenjuan Bian, Xue Yu, Xuhui Xu, and Jianbei Qiu, "Energy transfer between Ce3+ and Sm3+ in Zn2GeO4 phosphor with the native defects for light-emitting diodes," Chin. Opt. Lett. 15(08), 081601(2017)

Note: This work was supported by the National Nature Science Foundation of China (Nos. 61565009 and 61308091), the Young Talents Support Program of Faculty of Materials Science and Engineering, Kunming University of Science and Technology (No. 14078342), and the Postdoctoral Science Foundation of China (No. 2013M540720).


1. D. Q. Chen, Y. Zhou, W. Xu, J. S. Zhong, Z. G. Ji, and W. D. Xiang, J. Mater. Chem. C 4, 1704 (2016).

2. H. Li, Y. Zhang, X. Chen, C. Wu, J. Guo, Z. Gao, and H. Chen, Chin. Opt. Lett. 13, 080605 (2015).

3. Z. Li, H. Wang, B. Yu, X. Ding, and Y. Tang, Chin. Opt. Lett. 15, 042301 (2017).

4. S. D. Yu, Z. T. Li, G. W. Liang, Y. Tang, B. H. Yu, and K. H. Chen, Photon. Res. 4, 140 (2016).

5. Y. Chen, S. Wen, and P. Song, Chin. Opt. Lett. 13, 032302 (2015).

6. Y. Chen, F. J. Pan, M. Wang, X. J. Zhang, J. Wang, M. M. Wu, and C. X. Wang, J. Mater. Chem. C 4, 2367 (2016).

7. Q. Wang, D. Deng, Y. Hua, L. Huang, H. Wang, S. Zhao, G. Jia, C. Li, and S. Xu, J. Lumin. 132, 434 (2012).

8. S. Kumar, C. Tessarek, S. Christiansen, and R. Singh, J. Alloy. Comp. 587, 812 (2014).

9. G. F. Yang, P. Chen, S. M. Gao, G. Q. Chen, R. Zhang, and Y. D. Zheng, Photon. Res. 4, 17 (2016).

10. X. Xu, Y. Wang, W. Zeng, Y. Gong, and B. Liu, J. Am. Ceram. Soc. 94, 3632 (2011).

11. Y. F. Liu, L. L. Xia, Y. N. Lu, S. H. Dai, M. Takeguchi, H. M. Hong, and Z. G. Pan, J. Colloid Interf. Sci. 381, 24 (2012).

12. M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, Appl. Phys. Lett. 100, 013504 (2012).

13. Z. Guo, L. Zhu, J. Zhou, and Z. Sun, J. Mater. Chem. C 3, 4081 (2015).

14. V. B. Taxak, and S. P. Khatkar, J. Fluoresc. 22, 891 (2012).

15. Z. Zhou, N. Wang, N. Zhou, Z. He, S. Liu, Y. Liu, Z. Tian, Z. Mao, and H. T. Hintzen, J. Phys. D. Appl. Phys. 46, 035 (2013).

16. W. F. Zhang, J. W. Tang, and J. H. Ye, Chem. Phys. Lett. 418, 174 (2006).

17. Y. Jin, Y. Hu, H. Duan, L. Chen, and X. Wang, RSC. Adv. 4, 11360 (2014).

18. J. Li, J. Shi, J. Shen, H. Man, M. Wang, and H. Zhang, Nano. Lett. 7, 138 (2015).

19. J. Xu, Z. Ju, X. Gao, Y. An, X. Tang, and W. Liu, Inorg. Chem. 52, 13875 (2013).

20. G. Anoop, K. Mini Krishna, K. Rajeev Kumar, and M. K. Jayaraj, J. Electrochem. Soc. 155, J270 (2008).

21. M. Wan, Y. Wang, X. Wang, H. Zhao, and Z. Hu, Opt. Mater. 36, 650 (2014).

22. H. L. He, Y. H. Zhang, Q. W. Pan, G. B. Wu, G. P. Dong, and J. R. Qiu, J. Mater. Chem. C 3, 5419 (2015).

23. Y. Q. Jia, J. Solid. Chem. 95, 184 (1991).

24. X. Min, Z. Huang, M. Fang, Y. G. Liu, C. Tang, and X. Wu, Inorg. Chem. 53, 6060 (2014).

25. M. Shang, G. Li, D. Yang, X. Kang, C. Peng, and J. Lin, Dalton Trans. 41, 8861 (2012).

26. Z. Ci, Q. Sun, M. Sun, X. Jiang, S. Qin, and Y. Wang, J. Mater. Chem. C 16, 11597 (2014).

27. L. L. Han, Y. H. Wang, L. Zhao, J. Zhang, Y. Z. Wang, and Y. Tao, Opt. Mater. 36, 1203 (2014).

28. Y. Cui, S. Zhao, Z. Liang, M. Han, and Z. Xu, J. Alloy. Comp. 593, 30 (2014).

29. K. Li, Y. Zhang, X. J. Li, M. M. Shang, H. Z. Lian, and J. Lin, Dalton. Trans. 44, 4683 (2015).

30. D. L. Dexter, and J. A. Schulman, J. Chem. Phys. 22, 1063 (1954).

Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387