2017-08-21 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 08 , Vol. 15 , 2017    10.3788/COL201715.081402

Broad-area laser diodes with on-chip combined angled cavity
Zefeng Lu1;2, Lijie Wang1, Zhide Zhao3, Shili Shu1, Guanyu Hou1;2, Huanyu Lu1;2, Sicong Tian1, Cunzhu Tong1, and Lijun Wang1
1 State Key laboratory of Luminescence and Application, [Changchun Institute of Optics, Fine Mechanics and Physics], Chinese Academy of Sciences, Changchun 1 30033, China
2 [University of Chinese Academy of Sciences], Beijing 100049, China
3 [Suzhou Everbright Photonics Co., Ltd], Suzhou 215000, China

Chin. Opt. Lett., 2017, 15(08): pp.081402

Topic:Lasers and laser optics
Keywords(OCIS Code): 140.3070  140.5960  140.3295  140.3298  

Broad-area diode lasers usually supply high output power but low lateral beam quality. In this Letter, an on-chip combined angled cavity is proposed to realize narrow lateral far field patterns and high brightness. The influence of included angles, emitting facets on output power, and beam quality are investigated. It demonstrates that this V-junction laser is able to achieve a single-lobe far field at optimal cavity length with a 3.4 times improvement in brightness compared with Fabry–Perot (F-P) cavity lasers. The excited high-order modes at a high injection level reduce the brightness, but it is still 107% higher than that of F-P lasers.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (905 KB)


Posted online:2017/6/6

Get Citation: Zefeng Lu, Lijie Wang, Zhide Zhao, Shili Shu, Guanyu Hou, Huanyu Lu, Sicong Tian, Cunzhu Tong, and Lijun Wang, "Broad-area laser diodes with on-chip combined angled cavity," Chin. Opt. Lett. 15(08), 081402(2017)

Note: This work was supported by the National Natural Science Foundation of China (Nos. 61404138 and 61474119), the National Basic Research Program of China (No. 2013CB933303), the International Science Technology Cooperation Program of the Chinese Academy of Sciences (No. 181722KYSB20160005), the International Science Technology Cooperation Program of China (No. 2013DFR00730), the Jilin Provincial Natural Science Foundation (Nos. 20160101243JC and 20150520105JH), and the Opened Fund of the State Key Laboratory on Integrated Optoelectronics (No. IOSKL2016KF15).


1. W. J. Kozlovsky, and W. P. Risk, IEEE J. Quantum Electron. 28, 1139 (1992).

2. S. Zhang, M. G. Boudreau, R. Kuchibhatla, Y. Tao, S. R. Das, E. M. Griswold, and U. Sharma, J. Vac. Sci. Technol. A 22, 803 (2004).

3. Y. Gan, Y. Lu, Q. Xu, and C. Q. Xu, IEEE Photon. Technol. Lett. 25, 75 (2013).

4. F. Bachmann, Appl. Surf. Sci. 208-209, 125 (2003).

5. G. Tam, J. Clin. Laser Med. Surg. 17, 29 (1999).

6. V. V. Bezotosnyi, V. Y. Bondarev, O. N. Krokhin, G. T. Mikaelyan, V. A. Oleshchenko, V. F. Pevtsov, Y. M. Popov, and E. A. Cheshev, Quantum Electron. 39, 241 (2009).

7. S. Strohmaier, C. Tillkorn, P. Olschowsky, and J. Hostetler, Opt. Photon. News 21, 24 (2010).

8. M. L. Tilton, G. C. Dente, A. H. Paxton, J. Cser, R. K. DeFreez, C. E. Moeller, and D. Depatie, IEEE J. Quantum Electron. 27, 2098 (1991).

9. S. Ahn, C. Schwarzer, T. Zederbauer, D. C. MacFarland, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, Appl. Phys. Lett. 104, 051101 (2014).

10. S.-C. Auzanneau, M. Calligaro, M. Krakowski, F. Klopf, S. Deubert, J. P. Reithmaier, and A. Forchel, Appl. Phys. Lett. 84, 2238 (2004).

11. K. Paschke, A. Bogatov, F. Bugge, A. E. Drakin, J. Fricke, R. Guther, A. A. Stratonnikov, H. Wenzel, G. Erbert, and G. Trankle, IEEE J. Sel. Top. Quantum Electron. 9, 1172 (2003).

12. L. Zhu, X. Sun, G. A. DeRose, A. Scherer, and A. Yariv, Opt. Express 16, 502 (2008).

13. R. B. Swint, T. S. Yeoh, V. C. Elarde, J. J. Coleman, and M. S. Zediker, IEEE Photon. Technol. Lett. 16, 12 (2004).

14. J. Rong, E. Xing, L. Wang, S. Shu, S. Tian, C. Tong, and L. Wang, Appl. Phys. Express 9, 072104 (2016).

15. J. Rong, E. Xing, Y. Zhang, L. Wang, S. Shu, S. Tian, C. Tong, X. Chai, Y. Xu, H. Ni, Z. Niu, and L. Wang, Opt. Express 24, 7246 (2016).

16. L. Liu, Y. Liu, H. W. Qu, Y. F. Wang, H. L. Wang, Z. G. Feng, Y. J. Zhang, and W. H. Zheng, Opt. Lett. 39, 2391 (2014).

17. L. Liu, H. Qu, Y. Liu, R. Zhang, Y. Zhang, and W. Zheng, IEEE Photon. Technol. Lett. 26, 552 (2014).

18. C. H. Tsai, Y. S. Su, C. W. Tsai, D. P. Tsai, and C. F. Lin, IEEE Photon. Technol. Lett. 16, 2412 (2004).

19. D. Heydari, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, Appl. Phys. Lett. 106, 091105 (2015).

20. Y. Liu, Y. Wang, H. Qu, S. Zhao, L. Li, and W. Zheng, Appl. Phys. Express 10, 032701 (2017).

21. Y. Liu, H. W. Qu, S. Y. Zhao, X. Y. Zhou, Y. F. Wang, and W. H. Zheng, Semicond. Sci. Technol. 32, 01LT01 (2017).

22. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. Patel, Opt. Express 22, 1203 (2014).

23. Y. Zhao, and L. Zhu, Opt. Express 20, 6375 (2012).

24. Z. Yunsong, and Z. Lin, IEEE Photon. J. 5, 1500307 (2013).

25. O. AB, “Beam parameter product ” (Optoskand AB), http://www.optoskand.se/technology/beam-parameter-product/.

26. R. Hülsewede, J. Sebastian, H. Wenzel, G. Beister, A. Knauer, and G. Erbert, Opt. Commun. 192, 69 (2001).

Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387