2017-12-15 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 08 , Vol. 15 , 2017    10.3788/COL201715.081103


Enhanced quantitative X-ray phase-contrast images using Foucault differential filters
Jaeho Choi1, Young-Sung Park1;2
1 Department of Physics, [Dankook University], Cheonan 31 1 1 6, Korea
2 Division of RI Convergence Research, [Korea Institute of Radiological and Medical Sciences], Seoul 01812 , Korea

Chin. Opt. Lett., 2017, 15(08): pp.081103

DOI:10.3788/COL201715.081103
Topic:Imaging systems
Keywords(OCIS Code): 110.7440  180.7460  100.5070  070.6110  

Abstract
Enhanced quantitative X-ray phase-contrast (QXPC) imaging is implemented with a Foucault knife-edge array filter (FKAF), which is a real differential spatial filter. The intensities of Foucault differential filtering (FDF) are acquired according to the linear translation of the FKAF along the axes. The FDF using the FKAF scheme for obtaining the QXPC images is demonstrated by a stereoscopic rendering of the quantitative phase images of the tail fin of an anchovy containing soft and hard components in specimen. FDF is a noninterferometric quantitative phase-imaging method that depicts quantitative phase images and renders stereoscopic images.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (493 KB)

Share:


Received:2017/1/10
Accepted:2017/5/18
Posted online:2017/6/14

Get Citation: Jaeho Choi, Young-Sung Park, "Enhanced quantitative X-ray phase-contrast images using Foucault differential filters," Chin. Opt. Lett. 15(08), 081103(2017)

Note: This work was supported by the research fund of Dankook University (No. R000122495).



References

1. Z. Huang, K. Kang, L. Zhang, Z. Chen, F. Ding, Z. Wang, and Q. Fang, Phys. Rev. A 79, 013815 (2009).

2. J. Miao, T. Ishikawa, B. Johnson, E. H. Anderson, B. Lai, and K. O. Hodgson, Phys. Rev. Lett. 89, 0883031 (2002).

3. B. E. Allman, P. J. McMahon, J. B. Tiller, K. A. Nugent, D. Paganin, and A. Barty, J. Opt. Soc. Am. A 17, 1732 (2000).

4. C. David, J. Bruder, T. Rohbeck, C. Grünzweig, C. Kottler, A. Diaz, O. Bunk, and F. Pfeiffer, Microelectron. Eng. 84, 1172 (2007).

5. H. Liu, Y. Ren, H. Guo, Y. Xue, H. Xie, T. Xiao, and X. Wu, Chin. Opt. Lett. 10, 121101 (2012).

6. F. Devia, G. Milano, and G. Tanda, Exp. Therm. Fluid Sci. 8, 1 (1994).

7. E. Gaviola, J. Opt. Soc. Am. 26, 163 (1936).

8. L. Joannes, F. Dubois, and J. Legros, Appl. Opt. 42, 5046 (2003).

9. F. Zernike, Phys. Zeitschr. 36, 848 (1935).

10. K. Nagayama, J. Phys. Soc. Jpn. 73, 2725 (2004).

11. R. Danev, and K. Nagayama, Ultramicroscopy 88, 243 (2001).

12. U. Neuh?usler, G. Schneider, W. Ludwig, M. A. Meyer, E. Zschech, and D. Hambach, J. Phys. D: Appl. Phys. 36, A79 (2003).

13. C. Holzner, M. Feser, S. Vogt, B. Hornberger, S. Baine, and C. Jacobsen, Nat. Phys. 6, 883 (2010).

14. N. Watanabe, T. Sasaya, Y. Imai, S. Iwata, K. Zama, and S. Aoki, AIP Conf. Proc. 2003, 313 (2011).

15. J. Choi, and Y. Park, Appl. Phys. Exp. 5, 042503 (2012).

16. N. Watanabe, J. Hashizume, M. Goto, M Yamaguchi, T. Tsujiuura, and S. Aoki, J. Phys. Conf. Ser. 463, 012011 (2013).

17. P. Hawkes, Advances in Imaging and Electron Physics (Elsevier Academic, 2005), Vol.?138.


Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387