2017-10-20 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 08 , Vol. 15 , 2017    10.3788/COL201715.081101


Time-resolved multiple imaging by detecting photons with changeable wavelengths
Lingjun Kong1, Rui Liu1, Yu Si1, Zhouxiang Wang1, Chenghou Tu1, Yongnan Li1, and Huitian Wang1;2;3
1 MOE Key Laboratory of Weak Light Nonlinear Photonics and School of Physics, [Nankai University], Tianjin 300071 , China
2 National Laboratory of Solid State Microstructures and School of Physics, [Nanjing University], Nanjing 2 10093, China
3 Collaborative Innovation Center of Advanced Microstructures, [Nanjing University], Nanjing 210093 , China

Chin. Opt. Lett., 2017, 15(08): pp.081101

DOI:10.3788/COL201715.081101
Topic:Imaging systems
Keywords(OCIS Code): 110.4190  110.6915  030.5260  

Abstract
Transporting information is one of the important functions of photons and is also the essential duty of information science. Here, we realize multiple imaging by detecting photons with changeable wavelengths based on time-resolved correlation measurements. In our system, information from multiple objects can be transported. During this process, the wavelength of the photons illuminating the objects is different from the wavelength of the photons detected by the detectors. More importantly, the wavelength of the photons that are utilized to record images can also be changed to match the sensitive range of the used detectors. In our experiment, images of the objects are reconstructed clearly by detecting the photons at wavelengths of 650, 810, and 1064 nm, respectively. These properties should have potential applications in information science.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (1029 KB)

Share:


Received:2017/2/23
Accepted:2017/4/21
Posted online:2017/5/15

Get Citation: Lingjun Kong, Rui Liu, Yu Si, Zhouxiang Wang, Chenghou Tu, Yongnan Li, and Huitian Wang, "Time-resolved multiple imaging by detecting photons with changeable wavelengths," Chin. Opt. Lett. 15(08), 081101(2017)

Note: This work was supported by the National Natural Science Foundation of China (Nos. 11534006, 11674184, and 11374166), the Natural Science Foundation of Tianjin (Nos. 16JCZDJC31300 and 13JCZDJC33800), the 111 Project (No. B07013), and the Collaborative Innovation Center of Extreme Optics.



References

1. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, Phys. Rev. A 52, R3429 (1995).

2. R. S. Bennink, S. J. Bentley, and R. W. Boyd, Phys. Rev. Lett. 89, 113601 (2002).

3. A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, Phys. Rev. A 70, 013802 (2004).

4. A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, Phys. Rev. Lett. 93, 093602 (2004).

5. A. Valencia, G. Scarcelli, M. D’Angelo, and Y. H. Shih, Phys. Rev. Lett. 94, 063601 (2005).

6. D. Zhang, Y. H. Zhai, L. A. Wu, and X. H. Chen, Opt. Lett. 30, 2354 (2005).

7. L. J. Kong, Y. N. Li, S. X. Qian, S. M. Li, C. H. Tu, and H. T. Wang, Phys. Rev. A 88, 013852 (2013).

8. G. Scarcelli, V. Berardi, and Y. H. Shih, Phys. Rev. Lett. 96, 063602 (2006).

9. L. Basano, and P. Ottonello, Appl. Phys. Lett. 89, 091109 (2006).

10. G. Scarcelli, V. Berardi, and Y. H. Shih, Appl. Phys. Lett. 88, 061106 (2006).

11. R. Meyers, K. S. Deacon, and Y. H. Shih, Phys. Rev. A 77, 041801 (2008).

12. F. Ferri, D. Magatti, V. G. Sala, and A. Gatti, Appl. Phys. Lett. 92, 261109 (2008).

13. Y. Zhou, J. Simon, J. Liu, and Y. H. Shih, Phys. Rev. A 81, 043831 (2010).

14. X. Yao, X. Liu, W. Yu, and G. Zhai, Chin. Opt. Lett. 13, 010301 (2015).

15. X. Xu, E. Li, X. Shen, and S. Han, Chin. Opt. Lett. 13, 071101 (2015).

16. M. Sun, X. He, M. Li, and L. Wu, Chin. Opt. Lett. 14, 040301 (2016).

17. Q. Li, Z. Duan, H. Lin, S. Gao, S. Sun, and W. Liu, Chin. Opt. Lett. 14, 111103 (2016).

18. C. Yang, C. Wang, J. Guan, C. Zhang, S. Guo, W. Gong, and F. Gao, Photon. Res. 4, 281 (2016).

19. K. W. C. Chan, Opt. Lett. 37, 2739 (2012).

20. J. Du, W. Gong, and S. Han, Opt. Lett. 37, 1067 (2012).

21. R. E. Meyers, K. S. Deacon, and Y. Shih, Appl. Phys. Lett. 100, 131114 (2012).

22. R. E. Meyers, K. S. Deacon, and Y. Shih, Appl. Phys. Lett. 98, 111115 (2011).

23. Y. L. Xue, R. G. Wan, F. Feng, and T. Y. Zhang, Appl. Opt. 53, 3035 (2014).

24. D. Li, X. Li, Y. Qin, and Y. Cheng, IEEE Trans. Geosci. Remote Sens. 52, 2261 (2014).

25. G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, Nature 512, 409 (2014).

26. M. Lahiri, R. Lapkiewicz, G. B. Lemos, and A. Zeilinger, Phys. Rev. A 92, 013832 (2015).

27. C. K. Hong, and L. Mandel, Phys. Rev. A 31, 2409 (1985).

28. X. Y. Zou, L. J. Wang, and L. Mandel, Phys. Rev. Lett. 67, 318 (1991).

29. L. J. Wang, X. Y. Zou, and L. Mandel, Phys. Rev. A 44, 4614 (1991).

30. L. J. Wang, X. Y. Zou, and L. Mandel, J. Opt. Soc. Am. B 8, 978 (1991).

31. H. M. Wiseman, and K. M?lmer, Phys. Lett. A 270, 245 (2000).

32. J. Brendel, E. Mohler, and W. Martienssen, Phys. Rev. Lett. 66, 1142 (1991).

33. D. S. Tasca, R. S. Aspden, P. A. Morris, G. Anderson, R. W. Boyd, and M. J. Padgett, Opt. Express 21, 30460 (2013).

34. P. A. Morris, R. S. Aspden, J. E. C. Bell, R. W. Boyd, and M. J. Padgett, Nat. Commun. 6, 5913 (2014).

35. O. Kwon, Y. W. Cho, and Y. H. Kim, Phys. Rev. A 78, 053825 (2008).

36. C. H. Monken, P. H. S. Ribeiro, and S. Pádua, Phys. Rev. A 57, 3123 (1998).


Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387