2017-10-17 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 08 , Vol. 15 , 2017    10.3788/COL201715.080603


Impact of Brillouin amplification on the spatial resolution of noise-correlated Brillouin optical reflectometry
Mingjiang Zhang1;2;3, Xiaoyi Bao3, Jing Chai1;2, Yongning Zhang1;2, Ruixia Liu1;2, Hui Liu1;2, Yi Liu1;2, and Jianzhong Zhang1;2
1 [Key Lab of Advanced Transducers and Intelligent Control Systems], Ministry of Education and Shanxi Province, Taiyuan 030024, China
2 Institute of Optoelectronic Engineering, College of Physics &
Optoelectronics, [Taiyuan University of Technology], Taiyuan 03002 4, China
3 Fiber Optics Group, Department of Physics, [University of Ottawa], Ottawa K1N 6N5, Canada

Chin. Opt. Lett., 2017, 15(08): pp.080603

DOI:10.3788/COL201715.080603
Topic:Fiber optics and optical communication
Keywords(OCIS Code): 060.2370  060.4080  120.5820  290.5830  

Abstract
To obtain high spatial resolution over a long sensing distance in Brillouin optical correlation domain reflectometry (BOCDR), a broad laser spectrum and high pump power are used to improve the signal-to-noise ratio (SNR). In this Letter, we use a noise-modulated laser to study the variation of the Brillouin spectrum bandwidth and its impact on the coherent length of BOCDR quantitatively. The result shows that the best spatial resolution (lowest coherent length) is achieved by the lowest pump power with the highest noise-modulation spectrum. Temperature-induced changes in the Brillouin frequency shift along a 253.1 m fiber are demonstrated with a 19 cm spatial resolution.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (790 KB)

Share:


Received:2017/1/24
Accepted:2017/4/21
Posted online:2017/5/12

Get Citation: Mingjiang Zhang, Xiaoyi Bao, Jing Chai, Yongning Zhang, Ruixia Liu, Hui Liu, Yi Liu, and Jianzhong Zhang, "Impact of Brillouin amplification on the spatial resolution of noise-correlated Brillouin optical reflectometry," Chin. Opt. Lett. 15(08), 080603(2017)

Note: One of the authors, Mingjiang Zhang, thanks Dr. Liang Zhang and Dr. Dapeng Zhou, University of Ottawa, Canada, and Prof. Yuncai Wang, Taiyuan University of Technology, China, for their helpful discussions and proofreading the manuscript, and also thanks visiting Prof. Huimin Cai, University of Ottawa, Canada, for polishing up the manuscript.This work was supported by the National Natural Science Foundation of China (Nos. 61377089 and 61527819), the International Science & Technology Cooperation Program of China (No. 2014DFA50870), and the Natural Science Foundation of Shanxi (Nos. 2015011049 and 201601D021069).



References

1. X. Yan, H. Fu, H. Li, and X. Qiao, Chin. Opt. Lett. 14, 030603 (2016).

2. Z. Yang, H. Sun, T. Gang, N. Liu, J. Li, F. Meng, X. Qiao, and M. Hu, Chin. Opt. Lett. 14, 050604 (2016).

3. C. Lin, Y. Wang, Y. Huang, C. Liao, Z. Bai, M. Hou, Z. Li, and Y. Wang, Photon. Res. 5, 129 (2017).

4. Z. Wang, Z. Pan, Q. Ye, B. Lu, Z. Fang, H. Cai, and R. Qu, Chin. Opt. Lett. 13, 100603 (2015).

5. X. Bao, and L. Chen, Sensors 11, 4152 (2011).

6. K. Hotate, IEEE Sens. J. 142 (2014).

7. C. K. Y. Leung, K. T. Wan, D. Inaudi, X. Y. Bao, W. Habel, Z. Zhou, J. P. Ou, M. Ghandehari, H. C. Wu, and M. Imai, Mater. Struct. 48, 871 (2015).

8. D. Garus, E. Geinitz, T. Gogolla, S. Jetschke, K. Krebber, U. R?pke, and S. Unger, in Optical Fiber Sensors (1996), Th328.

9. Y. Koyamada, Y. Sakairi, N. Takeuchi, and S. Adachi, IEEE Photon. Technol. Lett. 19, 1910 (2007).

10. Y. Weng, E. Ip, Z. Pan, and T. Wang, Opt. Express 23, 9024 (2015).

11. T. Horiguchi, and M. Tateda, J. Lightwave Technol. 7, 1170 (1989).

12. W. Li, X. Bao, Y. Li, and L. Chen, Opt. Express 16, 21616 (2008).

13. Z. Li, and L. Yan, Opt. Express 24, 4824 (2016).

14. Z. Li, L. Yan, L. Shao, and W. Pan, IEEE Photon. J. 8, 1 (2016).

15. Y. Mizuno, W. Zou, Z. He, and K. Hotate, Opt. Express 16, 12148 (2008).

16. N. Hayashi, Y. Mizuno, and K. Nakamura, IEEE Photon. J. 7, 1 (2015).

17. N. Hayashi, Y. Mizuno, and K. Nakamura, Appl. Phys. Express 7, 112501 (2014).

18. H. Lee, N. Hayashi, Y. Mizuno, and K. Nakamura, IEEE Photon. J. 8, 6802807 (2016).

19. K. Y. Song, Z. He, and K. Hotate, Opt. Lett. 31, 2526 (2006).

20. A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thevenaz, Laser Photon. Rev. 6, L1 (2012).

21. R. Cohen, Y. London, Y. Antman, and A. Zadok, Opt. Express 22, 12070 (2014).

22. A. Denisov, M. A. Soto, and L. Thevenaz, Light Sci. Appl. 5, e16074 (2016).

23. Y. Mizuno, Z. He, and K. Hotate, Opt. Express 18, 5926 (2010).

24. J. Chai, M. Zhang, Y. Liu, L. Lan, W. Xu, and Y. Wang, Chin. Opt. Lett. 13, 080604 (2015).

25. H. Lee, N. Hayashi, Y. Mizuno, and K. Nakamura, Opt. Express 24, 29191 (2016).

26. Y. G. Yao, M. Kishi, and K. Hotate, Appl. Phys. Express 9, 072501 (2016).

27. K. Hotate, and Z. He, J. Lightwave Technol. 24, 2541 (2006).


Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387