2018-08-15 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 07 , Vol. 15 , 2017    10.3788/COL201715.071201

Detection of water surface capillary wave by analysis of turning-point local signal data using a laser interferometer
Lieshan Zhang, Xiaolin Zhang, and Wenyan Tang
School of Electrical Engineering and Automation, [Harbin Institute of Technology], Harbin 150001, China

Chin. Opt. Lett., 2017, 15(07): pp.071201

Topic:Instrumentation, measurement and metrology
Keywords(OCIS Code): 120.3180  120.7280  010.7340  

A laser interferometry technique is developed to detect water surface capillary waves caused by an impinging acoustic pressure field. The frequency and amplitude of the water surface capillary waves can be estimated from the local signal data at some special points of the phase modulated interference signal, which is called the turning points. Demodulation principles are proposed to explain this method. Experiments are conducted under conditions of different intensity and different frequency driving acoustic signals. The results show the local signal data analysis can effectively estimate the amplitude and frequency of water surface capillary waves.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (711 KB)


Posted online:2017/5/9

Get Citation: Lieshan Zhang, Xiaolin Zhang, and Wenyan Tang, "Detection of water surface capillary wave by analysis of turning-point local signal data using a laser interferometer," Chin. Opt. Lett. 15(07), 071201(2017)

Note: This work was supported by the National Natural Science Foundation of China (No. 61108073) and the Shanghai Aerospace Science Technology Foundation (No. 2015029).


1. I. B. Esipov, and S. Y. Pashin, Sov. Phys. Acoust. 36, 433 (1990).

2. J. H. Churnside, H. E. Bravo, K. A. Naugolnykh, and I. M. Fuks, Acoust. Phys. 54, 204 (2008).

3. D. Farrant, J. Burke, L. Dickinson, P. Fairman, and J. Wendoloski, in Proceedings of OCEANS’10 IEEE Sydney (2010).

4. A. Mours, C. Ioana, J. I. Mars, N. F. Josso, and Y. Doisy, J. Acoust. Soc. Am. 140, 1771 (2016).

5. Z. Wang, Y. Hu, Z. Meng, and M. Ni, Chin. Opt. Lett. 6, 381 (2008).

6. N. Beverini, S. Firpi, P. Guerrini, E. Maccioni, A. Maguer, M. Morganti, F. Stefani, and C. Trono, Proc. SPIE 7994, 79941D(2011).

7. H.-P. Duan, W.-Y. Tang, L.-H. Liu, and X.-L. Zhang, J. Optoelectron. Laser 20, 1189 (2009).

8. X.-L. Zhang, W.-Y. Tang, and H.-Y. Sun, Opt. Prec. Eng. 18, 809 (2010).

9. L. Zhang, X. Zhang, and W. Tang, Chin. Opt. Lett. 13, 091202 (2015).

10. F. A. Blackmon, and L. T. Antonelli, IEEE J. Oceanic Eng. 31, 179 (2006).

11. L. Antonelli, and B. Fletcher, in Proceedings of Oceans Conference Record (IEEE, 2002), p. 1949.

12. W. Sun, J. Liu, H. Gui, A. Lu, H. Wang, and Y. Lu, Chin. Opt. Lett. 14, 021201(2016).

13. Y. Zhu, L. Wang, M. Zhang, S. Lu, K. Yang, and C. Hu, Chin. Opt. Lett. 14, 061201 (2016).

14. M. Kedadouche, M. Thomas, and A. Tahan, Mech. Syst. Signal Process. 81, 88 (2016).

Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备05015387