2017-06-26 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 06 , Vol. 15 , 2017    10.3788/COL201715.062501

Graded index separate confinement heterostructure transistor laser: analysis of various confinement structures
Mohammad Hosseini1, Hassan Kaatuzian1, and Iman Taghavi2
1 Photonics Research Laboratory, Electrical Engineering Department, [Amirkabir University of Technology], Tehran 1 591 4, Iran
2 Electrical and Computer Engineering Department, [Georgia Institute of Technology], Atlanta, GA, 30332 , USA

Chin. Opt. Lett., 2017, 15(06): pp.062501

Keywords(OCIS Code): 250.5960  140.0140  230.0230  250.0250  270.0270  

A new configuration of the confinement structure is utilized to improve optoelectronic performance, including threshold current, ac current gain, optical bandwidth, and optical output power of a single quantum well transistor laser. Considering the drift component in addition to the diffusion term in electron current density, a new continuity equation is developed to analyze the proposed structures. Physical parameters, including electron mobility, recombination lifetime, optical confinement factor, electron capture time, and photon lifetime, are calculated for new structures. Based on solving the continuity equation in separate confinement heterostructures, the threshold current reduces 67%, the optical output power increases 37%, and the ?3 dB optical bandwidth increases to 21 GHz (compared to 19.5 GHz in the original structure) when the graded index layers of AlξGa1?ξAs (ξ:0.05→0 in the left side of quantum well, ξ:0→0.02 in the right side of quantum well) are used instead of uniform GaAs in the base region.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (680 KB)


Posted online:2017/3/21

Get Citation: Mohammad Hosseini, Hassan Kaatuzian, and Iman Taghavi, "Graded index separate confinement heterostructure transistor laser: analysis of various confinement structures," Chin. Opt. Lett. 15(06), 062501(2017)



1. R. Nagarajan, M. Ishikawa, T. Fukushima, R. S. Geels, and J. E. Bowers, IEEE J. Quantum Electron. 28, 1990 (1992).

2. J. Nagle, S. Hersee, M. Krakowski, T. Weil, and C. Weisbuch, Appl. Phys. Lett. 49, 1325 (1986).

3. M. Feng, N. Holonyak, H. W. Then, and G. Walter, Appl. Phys. Lett. 91, 053501 (2007).

4. W. Liu, Fundamentals of III-V Devices: HBTs, MESFETs, and FETs/HEMTs (Wiley, 1999).

5. J. H. Joe, and M. Missous, IEEE Trans. Electron Devices 52, 1693 (2005).

6. L. A. Coldren, and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley Interscience, 1995).

7. B. Faraji, W. Shi, D. L. Pulfrey, and L. Chrostowski, IEEE J. Sel. Top. Quantum Electron. 15, 594 (2009).

8. B. Faraji, D. L. Pulfrey, and L. Chrostowski, Appl. Phys. Lett. 93, 103509-1 (2008).

9. I. Taghavi, H. Kaatuzian, and J. P. Leburton, IEEE J. Quantum Electron. 49, 426 (2013).

10. I. Taghavi, H. Kaatuzian, and J. P. Leburton, Semicond. Sci. Technol. 28, 025022-1 (2013).

11. R. Basu, B. Mukhopadhyay, and P. K. Basu, Semicond. Sci. Technol. 26 26, 105014 (2011).

12. S. Herbert, J. Appl. Phys. 80, 3844 (1996).

13. H. Kaatuzian, and S. Taghavi, Chin. Opt. Lett. 7, 435 (2009).

14. S. Morin, B. Deveaud, F. Clerot, K. Fujiwara, and K. Mitsunaga, IEEE J. Quantum Electron. 27, 21 (1991).

15. M. Feng, H. W. Then, N. Holonyak, G. Walter, and A. James, Appl. Phys. Lett. 95, 033509 (2009).

Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387