2018-05-26 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 06 , Vol. 15 , 2017    10.3788/COL201715.062301

Experimental evidence of photonic crystal waveguides with wide bandwidth in two-dimensional Al2O3 rods array
Yong Wang1, Dengguo Zhang2, Shixiang Xu2, Biaogang Xu2, Zheng Dong2, and Tan Huang2
1 College of Optoelectronic Engineering, [Shenzhen University], Shenzhen 51 8060, China
2 College of Electronic Science and Technology, [Shenzhen University], Shenzhen 518060, China

Chin. Opt. Lett., 2017, 15(06): pp.062301

Topic:Optical devices
Keywords(OCIS Code): 230.5298  160.5293  130.5296  

A cross-shaped photonic crystal waveguide formed by a square lattice Al2O3 rods array is numerically and experimentally investigated. The band gap of the TE mode for the photonic crystals and transmission characteristics of waveguides are calculated by the plane wave expansion method and the finite element method. We perform the experiments in the microwave regime to validate the numerical results. The measured reflection and transmission characteristics of the photonic crystals show a large band gap between 8.62 and 11.554 GHz (relative bandwidth is 29.34%). The electromagnetic waves are transmitted stably in the waveguides, and the transmission characteristics maintain a high level in the band gap.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (1034 KB)


Posted online:2017/4/13

Get Citation: Yong Wang, Dengguo Zhang, Shixiang Xu, Biaogang Xu, Zheng Dong, and Tan Huang, "Experimental evidence of photonic crystal waveguides with wide bandwidth in two-dimensional Al2O3 rods array," Chin. Opt. Lett. 15(06), 062301(2017)

Note: This work was supported by the National Natural Science Foundation of China under Grant No. 61171006.


1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).

2. C. Wang, X. L. Zhong, and Z. Y. Li, Sci. Rep. 2, 674 (2012).

3. D. Zhou, and R. Biswas, J. App.?Phys. 103, 093102 (2008).

4. A. Bruyant, G. Lérondel, P. J. Reece, and M. Gal, Appl. Phys. Lett. 82, 3227 (2003).

5. A. Chutinan, M. Okano, and S. Noda, Appl. Phys. Lett. 80, 1698 (2002).

6. Y. Akahane, T. Asano, B. S. Song, and S. Noda, Nature 425, 944 (2003).

7. T. D. Happ, A. Markard, M. Kamp, J. L. Gentner, and A. Forchel, Electron. Lett. 37, 428 (2001).

8. Y. Akahane, M. Mochizuki, T. Asano, Y. Tanaka, and S. Noda, Appl. Phys. Lett. 82, 1341 (2003).

9. M. Qiu, and B. Jaskorzynska, Appl. Phys. Lett. 83, 1074 (2003).

10. Z. Wang, and S. H. Fan, Opt. Lett. 30, 1989 (2005).

11. Y. Wang, D. G. Zhang, S. X. Xu, Z. B. Ouyang, and J. Z. Li, Opt. Commun. 369, 1 (2016).

12. A. A. Jalali, and A. T. Friberg, Opt. Lett. 30, 1213 (2005).

13. Y. Wang, D. G. Zhang, Z. B. Ouyang, and J. Z. Li, Acta Opt. Sin. 34, 1023001 (2014).

14. K. Yayoi, K. Tobinaga, Y. Kaneko, A. V. Baryshev, and M. Inoue, J. Appl. Phys. 109, 07B750 (2011).

15. Z. H. Zhu, W. M. Ye, J. R. Ji, X. D. Yuan, and C. Zen, Opt. Express 14, 1783 (2006).

16. X. Lou, Y. Nie, J. Liao, X. Yang, P. Huang, D. Chen, and X. Li, Chin. Opt. Lett. 12, S11903 (2014).

17. F. Xu, and Y. Sun, Chin. Opt. Lett. 14, 031901 (2016).

18. D. R. Solli, C. F. Mccormick, R. Y. Chiao, and J. M. Hickmann, Appl. Phys. Lett. 82, 1036 (2003).

19. S. Duan, Y. Chen, G. Li, C. Zhu, and X. Chen, Chin. Opt. Lett. 14, 042301 (2016).

20. J. F. Xia, S. Serna, W. Zhang, L. Vivien, and E. Cassan, Photon. Res. 4, 257 (2016).

21. M. Lin, X. Jin, Z. Ouyang, G. Zheng, and G. Wen, Chin. Opt. Lett. 13, S11301 (2015).

Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387