2018-05-28 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 06 , Vol. 15 , 2017    10.3788/COL201715.062202

Design of image-side telecentric freeform imaging systems based on a point-by-point construction-iteration process
Tong Yang, Guofan Jin, and Jun Zhu
State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, [Tsinghua University], Beijing 100084, China

Chin. Opt. Lett., 2017, 15(06): pp.062202

Topic:Optical design and fabrication
Keywords(OCIS Code): 220.2740  080.4225  080.4228  

In this Letter, we present a novel design method of image-side telecentric freeform imaging systems. The freeform surfaces in the system can be generated using a point-by-point design approach starting from an initial system consisting of simple planes. The proposed method considers both the desired object–image relationships and the telecentricity at the image-side during the design process. The system generated by this method can be taken as a good starting point for further optimization. To demonstrate the benefit and feasibility of our method, we design two freeform off-axis three-mirror image-side telecentric imaging systems in the visible band. The systems operate at F/1.9 with a 30 mm entrance pupil diameter and 5° diagonal field-of-view. The modulation-transfer-function curves are above 0.69 at 100 lps/mm.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (741 KB)


Posted online:2017/3/21

Get Citation: Tong Yang, Guofan Jin, and Jun Zhu, "Design of image-side telecentric freeform imaging systems based on a point-by-point construction-iteration process," Chin. Opt. Lett. 15(06), 062202(2017)



1. M. Watanabe, and S. K. Nayar, Lect. Notes Comput. Sci. 1065, 439 (1996).

2. M. P. Rimmer, Proc. SPIE 0655, 99 (1986).

3. K. Kim, Y. Kim, and S. Park, J. Opt. Soc. Korea 19, 679 (2015).

4. A. Bauer, and J. P. Rolland, Opt. Express 23, 28141 (2015).

5. R. E. Fischer, B. Tadic-Galeb, and P. R. Yoder, Optical System Design (SPIE Press, 2008).

6. F. Fang, X. Zhang, A. Weckenmann, G. Zhang, and C. Evans, CIRP Ann. 62, 823 (2013).

7. X. Zhang, H. Gao, Y. Guo, and G. Zhang, CIRP Ann. Manuf. Technol. 61, 519 (2012).

8. F. Zhang, Chin. Opt. Lett. 13, S12202 (2015).

9. T. Yang, J. Zhu, and G. Jin, Chin. Opt. Lett. 14, 100801 (2016).

10. J. P. McGuire, in Renewable Energy and the Environment, OSA Technical Digest (2013), paper?FT3B.6.

11. G. Gong, J. Wei, and W. Shen, Proc. SPIE 7544, 754441 (2010).

12. G. Gong, “Design of fore-optics for hyperspectral imaging systems ,” Ph.D. Thesis, (Soochow University, 2009).

13. D. Cheng, Y. Wang, and H. Hua, Proc. SPIE 7849, 78490Q (2010).

14. R. A. Hicks, Opt. Lett. 33, 1672 (2008).

15. F. Duerr, P. Benítez, J. C. Mi?ano, Y. Meuret, and H. Thienpont, Opt. Express 20, 10839 (2012).

16. Y. Nie, H. Thienpont, and F. Duerr, Opt. Express 23, 34042 (2015).

17. T. Yang, J. Zhu, X. Wu, and G. Jin, Opt. Express 23, 10233 (2015).

18. J. Liu, P. Benítez, and J. C. Mi?ano, Opt. Express 22, 30538 (2014).

19. T. Yang, J. Zhu, and G. Jin, Appl. Opt. 55, 345 (2016).

20. J. Zhu, X. Wu, T. Yang, and G. Jin, J. Opt. Soc. Am. A 31, 2401 (2014).

21. Q. Meng, H. Wang, K. Wang, Y. Wang, Z. Ji, and D. Wang, Appl. Opt. 55, 8962 (2016).

22. T. Yang, J. Zhu, and G. Jin, J. Opt. Soc. Am. A 32, 822 (2015).

23. K. Fuerschbach, J. P. Rolland, and K. P. Thompson, Opt. Express 22, 26585 (2014).

24. K. Fuerschbach, J. Rolland, and K. P. Thompson, Opt. Express 19, 21919 (2011).

Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387