2017-06-26 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 06 , Vol. 15 , 2017    10.3788/COL201715.061901


Resonant and nonresonant second-harmonic generation in a single cadmium sulfide nanowire
Xiaoyang Huang1, Shuwei Dai1, Pengfei Xu2, Yongmei Wang1, Qing Yang2, Yong Zhang1, and Min Xiao1;3
1 National Laboratory of Solid State Microstructures, School of Physics, and College of Engineering and Applied Sciences, [Nanjing University], Nanjing 21 0093, China
2 State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, [Zhejiang University], Hangzhou 31002 7, China
3 Department of Physics, [University of Arkansas], Fayetteville, Arkansas 72701, USA

Chin. Opt. Lett., 2017, 15(06): pp.061901

DOI:10.3788/COL201715.061901
Topic:Nonlinear optics
Keywords(OCIS Code): 190.2620  190.4720  

Abstract
We experimentally investigate the resonant and nonresonant second-harmonic generation in a single cadmium sulfide (CdS) nanowire. The second-order susceptibility tensor is determined by analyzing the forward second-harmonic signals of the CdS nanowire. Our results show that (1) d33/d31=?2.5 at a nonresonant input wavelength of 1050 nm; (2) d33/d31=?1.9 at a resonant wavelength of 740 nm. The difference can be attributed to the polarization-dependent resonance.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (469 KB)

Share:


Received:2016/12/17
Accepted:2017/2/24
Posted online:2017/3/20

Get Citation: Xiaoyang Huang, Shuwei Dai, Pengfei Xu, Yongmei Wang, Qing Yang, Yong Zhang, and Min Xiao, "Resonant and nonresonant second-harmonic generation in a single cadmium sulfide nanowire," Chin. Opt. Lett. 15(06), 061901(2017)

Note: This work was supported by the National Science Foundation of China (Nos. 91636106 and 11621091) and the National Basic Research Program of China (No. 2016YFA0302500).



References

1. Y. Li, D. S. Xu, Q. M. Zhang, D. P. Chen, F. Z. Huang, Y. J. Xu, G. L. Guo, and Z. N. Gu, Chem. Mat. 11, 3433 (1999).

2. C. Ye, G. Meng, Y. Wang, Z. Jiang, and L. Zhang, J. Phys. Chem. B 106, 10338 (2002).

3. L. Dong, J. Jiao, M. Coulter, and L. Love, Chem. Phys. Lett. 376, 653 (2003).

4. T. Gao, and T. Wang, J. Phys. Chem. B 108, 20045 (2004).

5. Y. Wang, G. Meng, L. Zhang, C. Liang, and J. Zhang, Chem. Mat. 14, 1773 (2002).

6. Y. Xiong, Y. Xie, J. Yang, R. Zhang, C. Wu, and G. Du, J. Mater. Chem. 12, 3712 (2002).

7. C. J. Barrelet, Y. Wu, D. C. Bell, and C. M. Lieber, J. Am. Chem. Soc. 125, 11498 (2003).

8. T. Zhai, X. Fang, L. Li, Y. Bando, and D. Golberg, Nanoscale 2, 168 (2010).

9. X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, Nature 421, 241 (2003).

10. B. L. Cao, Y. Jiang, C. Wang, W. H. Wang, L. Z. Wang, M. Niu, W. J. Zhang, Y. Q. Li, and S. T. Lee, Adv. Functional Mater. 17, 1501 (2007).

11. Y. Ma, X. Li, Z. Yang, H. Yu, P. Wang, and L. Tong, Appl. Phys. Lett. 97, 153122 (2010).

12. G. Sebastian, T. Andreas, R. Robert, B. Christian, M. Amanda, K. Michael, K. Julian, A. S. Kristen, C. Federico, and R. Carsten, Nanotechnology 23, 365204 (2012).

13. H. Yu, W. Fang, X. Wu, X. Lin, L. Tong, W. Liu, A. Wang, and Y. R. Shen, Nano Lett. 14, 3487 (2014).

14. C. J. Barrelet, H.-S. Ee, S.-H. Kwon, and H.-G. Park, Nano Lett. 11, 3022 (2011).

15. V. S. Muthukumar, J. Reppert, C. S. S. Sandeep, S. S. R. Krishnan, R. Podila, N. Kuthirummal, S. S. S. Sai, K. Venkataramaniah, R. Philip, and A. M. Rao, Opt. Commun. 283, 4104 (2010).

16. Y. Zhang, H. Zhou, S. W. Liu, Z. R. Tian, and M. Xiao, Nano Lett. 9, 2109 (2009).

17. G.-Z. Li, Y.-P. Chen, H.-W. Jiang, and X.-F. Chen, Photon. Res. 3, 168 (2015).

18. B. Zhang, J. Ning, Z. Wang, K. Han, and J. He, Chin. Opt. Lett. 13, 051402 (2015).

19. F. Xu, and Y. Sun, Chin. Opt. Lett. 14, 031901 (2016).

20. C. Richard, T. Danielle, H. Nehad, S. Ankur, S. Alexander, E. R. Harry, and B. Virginijus, Nanotechnology 25, 505703 (2014).

21. H. Hu, K. Wang, H. Long, W. Liu, B. Wang, and P. Lu, Nano Lett. 15, 3351 (2015).

22. M.-L. Ren, R. Agarwal, W. Liu, and R. Agarwal, Nano Lett. 15, 7341 (2015).

23. H. Cao, J. Y. Wu, H. C. Ong, J. Y. Dai, and R. P. H. Chang, Appl. Phys. Lett. 73, 572 (1998).

24. S. W. Chan, R. Barille, J. M. Nunzi, K. H. Tam, Y. H. Leung, W. K. Chan, and A. B. Djuri?i?, Appl. Phys. B 84, 351 (2006).

25. R. Chen, S. Crankshaw, T. Tran, L. C. Chuang, M. Moewe, and C. Chang-Hasnain, Appl. Phys. Lett. 96, 051110 (2010).

26. J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. Yang, and R. J. Saykally, Nano Lett. 2, 279 (2002).

27. J. P. Long, B. S. Simpkins, D. J. Rowenhorst, and P. E. Pehrsson, Nano Lett. 7, 831 (2007).

28. K. Geren, S. W. Liu, H. J. Zhou, Y. Zhang, R. Tian, and M. Xiao, J. Appl. Phys. 105, 063531 (2009).

29. A. Bonda, S. Uba, and L. Uba, Appl. Phys. Lett. 105, 191608 (2014).

30. R. Prasanth, L. K. van Vugt, D. A. M. Vanmaekelbergh, and H. C. Gerritsen, Appl. Phys. Lett. 88, 181501 (2006).

31. J. Dai, J.-H. Zeng, S. Lan, X. Wan, and S.-L. Tie, Opt. Express 21, 10025 (2013).

32. R. C. Miller, and W. A. Nordland, Appl. Phys. Lett. 16, 174 (1970).

33. R. C. Miller, D. A. Kleinman, and A. Savage, Phys. Rev. Lett. 11, 146 (1963).

34. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, J. Opt. Soc. Am. B 14, 2268 (1997).


Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387