2018-05-28 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 06 , Vol. 15 , 2017    10.3788/COL201715.060602

Pump induced birefringence in dual-polarization fiber grating lasers
Linghao Cheng, Yunbo Li, Yizhi Liang, Hao Liang, and Bai-Ou Guan
Institute of Photonics Technology, [Jinan University], Guangzhou 510632, China

Chin. Opt. Lett., 2017, 15(06): pp.060602

Topic:Fiber optics and optical communication
Keywords(OCIS Code): 060.2370  280.3420  

Birefringence is critical in dual-polarization fiber-laser-based fiber-optic sensing systems, as it directly determines the beat frequency between the two polarizations. A study of pump induced birefringence in dual-polarization fiber lasers is presented here, which shows that the pump induced birefringence is a result of the interplay among pump induced refractive index change, laser dynamics, and anisotropy inside fiber lasers. For erbium-doped fiber lasers, pumping at 1480 nm is better than pumping at 980 nm in lower pump induced birefringence. Moreover, injection at 532 nm for an adequately long enough time can permanently reduce anisotropy and, hence, reduce pump induced birefringence.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (385 KB)


Posted online:2017/3/29

Get Citation: Linghao Cheng, Yunbo Li, Yizhi Liang, Hao Liang, and Bai-Ou Guan, "Pump induced birefringence in dual-polarization fiber grating lasers," Chin. Opt. Lett. 15(06), 060602(2017)

Note: This work was supported by the National Natural Science Foundation of China (Nos. 11474133, 61235005, and 61675091) and the Natural Science Foundation of Guangdong Province of China (No. 2014A030310419).


1. B.-O. Guan, L. Jin, Y. Zhang, and H.-Y. Tam, J. Lightwave Technol. 30, 1097 (2012).

2. Y. Zhang, B.-O. Guan, and H.-Y. Tam, Opt. Express 17, 10050 (2009).

3. Z. Liu, and H.-Y. Tam, Chin. Opt. Lett. 14, 120007 (2016).

4. Z. Kuang, L. Cheng, Y. Liang, H. Liang, and B.-O. Guan, Chin. Opt. Lett. 14, 050602 (2016).

5. E. Desurvire, J. Lightwave Technol. 8, 1517 (1990).

6. C. Thirstrup, Y. Shi, and B. Pálsdóttir, J. Lightwave Technol. 14, 732 (1996).

7. S. C. Fleming, and T. J. Whitley, IEEE J. Quantum Electron. 32, 1113 (1996).

8. A. Quintela, M. A. Quintela, C. Jauregui, and J. M. Lopez-Higuera, IEEE Photon. Technol. Lett. 19, 732 (2007).

9. L. Mousavi, M. Sabaeian, and H. Nadgaran, Opt. Commu. 300, 69 (2013).

10. L. Mousavi, and M. Sabaeian, Braz. J. Phys. 46, 481 (2016).

11. A. Jahromi, M. Sabaeian, and H. Nadgaran, Opt. Commun. 311, 134 (2013).

12. Y. Liang, Q. Yuan, L. Jin, L. Cheng, and B.-O. Guan, IEEE J. Sel. Top. Quantum Electron. 20, 5600208 (2014).

13. M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, Opt. Fiber Technol. 3, 44 (1997).

14. B. E. A. Saleh, and M. C. Teich, Fundamentals of Photonics (Wiley-Interscience, 2007).

15. P. A. Krug, M. G. Sceats, G. R. Atkins, S. C. Guy, and S. B. Poole, Opt. Lett. 16, 1976 (1991).

16. Y. Mita, T. Yoshida, T. Yagami, and S. Shionoya, J. Appl. Phys. 71, 938 (1992).

17. P. Wysocki, and V. Mazurczyk, J. Lightwave Technol. 14, 572 (1996).

18. E. Ronnekleiv, M. N. Zervas, and J. T. Kringlebotn, IEEE J. Quantum Electron. 34, 1559 (1998).

19. A. Hidayat, B. Koch, H. Zhang, V. Mirvoda, M. Lichtinger, D. Sandel, and R. Noé, Opt. Express 16, 18984 (2008).

20. P. Cai, J. Wang, C. Wang, P. Zeng, and H. Li, Chin. Opt. Lett. 14, 010009 (2016).

21. T. Erdogan, and V. Mizrahi, J. Opt. Soc. Am. B 11, 2100 (1994).

22. Y. Zhang, Y.-N. Tan, T. Guo, and B.-O. Guan, Opt. Express 19, 218 (2010).

Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387