2017-06-26 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 06 , Vol. 15 , 2017    10.3788/COL201715.060202


Spin dynamics of high-spin fermions in optical superlattices
Shaobing Zhu1;2, Jun Qian1, and Yuzhu Wang1
1 Key Laboratory for Quantum Optics and Center for Cold Atom Physics, [Shanghai Institute of Optics and Fine Mechanics], Chinese Academy of Sciences, Shanghai 201 800, China
2 University of Chinese Academy of Sciences, Beijing 100049, China

Chin. Opt. Lett., 2017, 15(06): pp.060202

DOI:10.3788/COL201715.060202
Topic:Atomic and molecular physics
Keywords(OCIS Code): 020.3320  020.7010  020.2070  

Abstract
We investigate the spin dynamics, starting from the initial band-insulating state, of fermionic high-spin atoms in optical superlattices. Through numerical simulations and analytical calculations, we determine the time evolution behavior of the system. When the spin-changing strength and tunneling strength are comparable, the spin dynamics feature a spin-changing oscillation with the amplitude modulated by the superexchange interaction. When the double-well potential is very shallow, the spin dynamics feature a simple harmonic oscillation with the oscillation frequencies related only to the spin-changing strength, which can be properly explained with the perturbation model.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (656 KB)

Share:


Received:2016/12/6
Accepted:2017/3/3
Posted online:2017/3/22

Get Citation: Shaobing Zhu, Jun Qian, and Yuzhu Wang, "Spin dynamics of high-spin fermions in optical superlattices," Chin. Opt. Lett. 15(06), 060202(2017)

Note: This work was supported by the National Key Research and Development Program of China under Grant No. 2016YFA0301504.



References

1. I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885 (2008).

2. M. Lewenstein, A. Sanpera, and V. Ahufinger, Ultracold Atoms in Optical Lattices: Simulating Quantum Many-Body Systems (Oxford University, 2012).

3. S. Deachapunya, and S. Srisuphaphon, Chin. Opt. Lett. 12, 031101 (2014).

4. Q. Xu, H. Liu, B. Lu, Y. Wang, M. Yin, D. Kong, J. Ren, X. Tian, and H. Chang, Chin. Opt. Lett. 13, 100201 (2015).

5. T. Lompe, T. B. Ottenstein, F. Serwane, A. N. Wenz, G. Zurn, and S. Jochim, Science 330, 940 (2010).

6. S. Taie, Y. Takasu, S. Sugawa, R. Yamazaki, T. Tsujimoto, R. Murakami, and Y. Takahashi, Phys. Rev. Lett. 105, 190401 (2010).

7. S. Stellmer, R. Grimm, and F. Schreck, Phys. Rev. A 84, 043611 (2011).

8. J. S. Krauser, J. Heinze, N. Flaschner, S. Gotze, O. Jurgensen, D. S. Luhmann, C. Becker, and K. Sengstock, Nat. Phys. 8, 813 (2012).

9. O. Jurgensen, J. Heinze, and D. S. Luhmann, New J. Phys. 15, 113017 (2013).

10. T. L. Ho, Phys. Rev. Lett. 81, 742 (1998).

11. C. K. Law, H. Pu, and N. P. Bigelow, Phys. Rev. Lett. 81, 5257 (1998).

12. T. Ohmi, and K. Machida, J. Phys. Soc. Jpn. 67, 1822 (1998).

13. N. Bornemann, P. Hyllus, and L. Santos, Phys. Rev. Lett. 100, 205302 (2008).

14. J. S. Krauser, U. Ebling, N. Flaschner, J. Heinze, K. Sengstock, M. Lewenstein, A. Eckardt, and C. Becker, Science 343, 157 (2014).

15. T. L. Ho, and S. Yip, Phys. Rev. Lett. 82, 247 (1999).

16. C. J. Wu, J. P. Hu, and S. C. Zhang, Phys. Rev. Lett. 91, 186402 (2003).

17. C. J. Wu, Phys. Rev. Lett. 95, 266404 (2005).

18. P. Lecheminant, E. Boulat, and P. Azaria, Phys. Rev. Lett. 95, 240402 (2005).

19. H. H. Tu, G. M. Zhang, and L. Yu, Phys. Rev. B 74, 174404 (2006).

20. A. Rapp, G. Zarand, C. Honerkamp, and W. Hofstetter, Phys. Rev. Lett. 98, 160405 (2007).

21. K. Rodriguez, A. Arguelles, M. Colome-Tatche, T. Vekua, and L. Santos, Phys. Rev. Lett. 105, 050402 (2010).

22. C. Honerkamp, and W. Hofstetter, Phys. Rev. Lett. 92, 170403 (2004).

23. A. V. Gorshkov, M. Hermele, V. Gurarie, C. Xu, P. S. Julienne, J. Ye, P. Zoller, E. Demler, M. D. Lukin, and A. M. Rey, Nat. Phys. 6, 289 (2010).

24. X. Zhang, M. Bishof, S. L. Bromley, C. V. Kraus, M. S. Safronova, P. Zoller, A. M. Rey, and J. Ye, Science 345, 1467 (2014).

25. F. Scazza, C. Hofrichter, M. H?fer, P. C. De Groot, I. Bloch, and S. Folling, Nat. Phys. 10, 779 (2014).

26. G. Cappellini, M. Mancini, G. Pagano, P. Lombardi, L. Livi, M. Siciliani de Cumis, P. Cancio, M. Pizzocaro, D. Calonico, F. Levi, C. Sias, J. Catani, M. Inguscio, and L. Fallani, Phys. Rev. Lett. 113, 120402 (2014).

27. M. A. Cazalilla, and A. M. Rey, Rep. Prog. Phys. 77, 124401 (2014).

28. M. Greiner, O. Mandel, T. Esslinger, T. W. H?nsch, and I. Bloch, Nature 415, 39 (2002).

29. S. F?lling, S. Trotzky, P. Cheinet, M. Feld, R. Saers, A. Widera, T. Muller, and I. Bloch, Nature 448, 1029 (2007).

30. A. M. Rey, V. Gritsev, I. Bloch, E. Demler, and M. D. Lukin, Phys. Rev. Lett. 99, 140601 (2007).

31. S. Trotzky, P. Cheinet, S. F?lling, M. Feld, U. Schnorrberger, A. M. Rey, A. Polkovnikov, E. A. Demler, M. D. Lukin, and I. Bloch, Science 319, 295 (2008).

32. R. C. Brown, R. Wyllie, S. B. Koller, E. A. Goldschmidt, M. Foss-Feig, and J. V. Porto, Science 348, 540 (2015).

33. L. M. Duan, E. Demler, and M. D. Lukin, Phys. Rev. Lett. 91, 090402 (2003).

34. E. Altman, W. Hofstetter, E. Demler, and M. D. Lukin, New J. Phys. 5, 113 (2003).

35. A. B. Kuklov, and B. V. Svistunov, Phys. Rev. Lett. 90, 100401 (2003).


Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387